9.已知集合U={x|x>1},集合A={x|x2-4x+3<0},則∁UA=( 。
A.[3,+∞)B.(3,+∞)C.(-∞,-1)D.(1,3)

分析 根據(jù)題意,解x2-4x+3<0可得集合A,又由全集U={x|x>1},結(jié)合補集的定義即可得答案.

解答 解:根據(jù)題意,x2-4x+3<0⇒1<x<3,
即A={x|x2-4x+3<0}={x|1<x<3}=(1,3),
而集合U={x|x>1},
則∁UA={x|x≥3}=[3,+∞);
故選:A.

點評 本題考查集合的補集運算,關(guān)鍵是理解集合補集的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.毛澤東同志在《清平樂•六盤山》中的兩句詩為“不到長城非好漢,屈指行程二萬”,假設(shè)詩句的前一句為真命題,則“到長城”是“好漢”的(  )
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知各項均為正數(shù)的等比數(shù)列{an}中,a5•a6=4,則數(shù)列{log2an}的前10項和為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)實數(shù)a>b>0,c>0,則下列不等式一定正確的是( 。
A.$0<\frac{a}<1$B.$ln\frac{a}>0$C.ca>cbD.ac-bc<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|x2-x-6≤0},$B=\{x|\sqrt{x^2}>2\}$,則A∩B=( 。
A.(2,3]B.(2,3)C.(-2,3]D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點C是圓F:(x+1)2+y2=16上的任意一點,點F為圓F的圓心,點F′與點F關(guān)于平面直角系的坐標(biāo)原點對稱,線段CF′的垂直平分線與線段CF交于點P.
(1)求動點P的軌跡E的方程;
(2)若軌跡E與y軸正半軸交于點M,直線$l:y=kx+2\sqrt{3}$交軌跡E于A,B兩點,求△ABM面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,設(shè)雙曲線的離心率為e.若在雙曲線的右支上存在點M,滿足|MF2|=|F1F2|,且esin∠MF1F2=1,則該雙曲線的離心率e等于( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\sqrt{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z滿足$\frac{11+2i}{z}$=1+2i(i為虛數(shù)單位),則z的虛部為(  )
A.4B.4iC.-4D.-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R)的兩個零點為x1,x2,若|x1|+|x2|≤2,則(  )
A.|a|≥1B.b≤1C.|a+2b|≥2D.|a+2b|≤2

查看答案和解析>>

同步練習(xí)冊答案