4.在直角坐標(biāo)平面內(nèi),如果兩點(diǎn)P,Q滿足條件:①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于y軸對(duì)稱,則稱(P,Q)是函數(shù)y=f(x)的一對(duì)“偶點(diǎn)”(偶點(diǎn)(P,Q)與(Q,P)看作同一對(duì)偶點(diǎn)),已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx-1,x≥0}\\{2{x}^{2}+4x+3,x<0}\end{array}\right.$有兩對(duì)“偶點(diǎn)”,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-4-4$\sqrt{2}$)B.(-4+4$\sqrt{2}$,+∞)C.(-4-4$\sqrt{2}$,-4+4$\sqrt{2}$)D.(0,-4+4$\sqrt{2}$)

分析 求出y=2x2+4x+3(x<0)關(guān)于y軸對(duì)稱的函數(shù)為y=2x2-4x+3(x>0),令y=kx-1與y=2x2-4x+3(x>0)有兩交點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義求出k的臨界值即可得出k的范圍.

解答 解:y=2x2+4x+3(x<0)關(guān)于y軸對(duì)稱的函數(shù)為y=2x2-4x+3(x>0),
∴f(x)有兩對(duì)偶點(diǎn),
∴y=kx-1與y=2x2-4x+3在(0,+∞)上有兩個(gè)交點(diǎn),
作出y=kx-1與y=2x2-4x+3的函數(shù)圖象,

設(shè)y=kx-1與y=2x2-4x+3相切,切點(diǎn)為(x0,y0),
則$\left\{\begin{array}{l}{{y}_{0}=k{x}_{0}-1}\\{{y}_{0}=2{{x}_{0}}^{2}-4{x}_{0}+3}\\{4{x}_{0}-4=k}\end{array}\right.$,解得x0=$\sqrt{2}$,y0=7-4$\sqrt{2}$,k=4$\sqrt{2}$-4,
∴當(dāng)k>4$\sqrt{2}$-4時(shí),直線y=kx-1與y=2x2-4x+3有兩個(gè)交點(diǎn).
故選:B.

點(diǎn)評(píng) 本題考查了方程根與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$f(x)=\sqrt{3}sinxcosx-{sin^2}x$,把f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,再向上平移$\frac{1}{2}$個(gè)單位,得到y(tǒng)=g(x)的圖象,則(  )
A.g(x)為奇函數(shù)B.g(x)為偶函數(shù)
C.g(x)在$[0,\frac{π}{3}]$上單調(diào)遞增D.g(x)的一個(gè)對(duì)稱中心為$(-\frac{π}{2},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2kx,g(x)=log3x,若f(-1)=g(9),則實(shí)數(shù)k的值是(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow a=({-1,2}),\overrightarrow b=({2,m}),\overrightarrow c=({7,1})$,若$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow b•\overrightarrow c$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),$f(x)=\left\{\begin{array}{l}\frac{5}{4}sin({\frac{π}{2}x})({0≤x≤1})\\{({\frac{1}{4}})^x}+1({x>1})\end{array}\right.$若關(guān)于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(0,1)∪{$\frac{5}{4}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sinα+cosα=$\sqrt{2}$,求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}和等比數(shù)列{bn},其中{an}的公差不為0.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和.若a1,a2,a5是數(shù)列{bn}的前3項(xiàng),且S4=16.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{$\frac{4{S}_{n}-1}{{a}_{n}+t}$}為等差數(shù)列,求實(shí)數(shù)t;
(3)構(gòu)造數(shù)列a1,b1,a2,b1,b2,a3,b1,b2,b3,…,ak,b1,b2,…,bk,…,若該數(shù)列前n項(xiàng)和Tn=1821,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在直角坐標(biāo)系xOy中,已知點(diǎn)A(3,0)和點(diǎn)B(-4,3).若點(diǎn)M在∠AOB的平分線上且$|{\overrightarrow{OM}}|=\sqrt{10}$,則$\overrightarrow{OM}$=(1,3).(用坐標(biāo)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知角A,B為銳角,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,求sin(A+B)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案