3.設(shè)A是單位圓O和x軸正半軸的交點,P,Q是圓O上兩點,O為坐標(biāo)原點,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,$\frac{π}{2}$].
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α-$\frac{π}{6}$)的值;
(2)設(shè)函數(shù)f(α)=sinα•($\overrightarrow{OP}$•$\overrightarrow{OQ}$),求f(α)的值域.

分析 (1)利用差角的余弦公式計算;
(2)利用三角恒等變換化簡f(α),再利用α的范圍和正弦函數(shù)的性質(zhì)求出f(α)的最值.

解答 解:(1)由已知得cosα=$\frac{3}{5}$,sinα=$\frac{4}{5}$,
∴cos($α-\frac{π}{6}$)=$\frac{3}{5}×\frac{\sqrt{3}}{2}$+$\frac{4}{5}$×$\frac{1}{2}$=$\frac{3\sqrt{3}+4}{10}$.
(2)$\overrightarrow{OP}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{OQ}$=(cosα,sinα),
∴$\overrightarrow{OP}•\overrightarrow{OQ}$=$\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα,
∴f(α)=$\frac{\sqrt{3}}{2}$sinαcosα+$\frac{1}{2}$sin2α=$\frac{\sqrt{3}}{4}$sin2α-$\frac{1}{4}$cos2α+$\frac{1}{4}$=$\frac{1}{2}$sin(2α-$\frac{π}{6}$)+$\frac{1}{4}$.
∵α∈[0,$\frac{π}{2}$],∴2α-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴當(dāng)2α-$\frac{π}{6}$=-$\frac{π}{6}$時,f(α)取得最小值$\frac{1}{2}×(-\frac{1}{2})$+$\frac{1}{4}$=0,
當(dāng)2α-$\frac{π}{6}$=$\frac{π}{2}$時,f(α)取得最大值$\frac{1}{2}×1+\frac{1}{4}$=$\frac{3}{4}$.
∴f(α)的值域是[0,$\frac{3}{4}$].

點評 本題考查了三角恒等變換,正弦函數(shù)的性質(zhì),平面向量的數(shù)量積運算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.當(dāng)α為第二象限時,$\frac{|sinα|}{sinα}$-$\frac{|cosα|}{cosα}$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{10-m}$-$\frac{{y}^{2}}{2-m}$=1,長軸在y軸上,若焦距為4,則m等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,過點F的直線分別交兩條漸近線于A,B兩點,OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知平面內(nèi)兩點A(-4,1),B(-3,-1),過定點M(-2,2)的直線與線段AB恒有公共點,則直線斜率的取值范圍是[$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓$ρ=\sqrt{2}(cosθ+sinθ)$的圓心的極坐標(biāo)是(1,$\frac{π}{4}$).(ρ>0,θ∈[0,2π))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a>0,b>0,
(1)求證:$\frac{{a}^{2}}$$+\frac{^{2}}{a}$≥a+b
(2)求證:$\frac{1}{a}$$+\frac{4}$$≥\frac{9}{a+b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{12}$對稱,當(dāng)x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2時,f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案