函數(shù)y=
cosx-
3
2
的定義域?yàn)?!--BA-->
{x|2kπ-
π
6
≤x≤2kπ+
π
6
,k∈Z}
{x|2kπ-
π
6
≤x≤2kπ+
π
6
,k∈Z}
分析:由cosx-
3
2
≥0及余弦函數(shù)的性質(zhì)即可求得y=
cosx-
3
2
的定義域.
解答:解:∵cosx-
3
2
≥0,
∴cosx≥
3
2

∴2kπ-
π
6
≤x≤2kπ+
π
6
,k∈Z.
∴函數(shù)y=
cosx-
3
2
的定義域?yàn)閧x|2kπ-
π
6
≤x≤2kπ+
π
6
,k∈Z}.
故答案為:{x|2kπ-
π
6
≤x≤2kπ+
π
6
,k∈Z}.
點(diǎn)評(píng):本題考查余弦函數(shù)的單調(diào)性,考查解不等式的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=cosx的圖象,只需將函數(shù)y=sin(
x
2
+
π
3
)的圖象上( 。
A、各點(diǎn)向左平
π
12
個(gè)單位,再把所得函數(shù)圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
B、各點(diǎn)向右平移
π
3
個(gè)單位,再把所得函數(shù)圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
C、各點(diǎn)的橫坐標(biāo)擴(kuò)大為原來(lái)的2倍,再把所得函數(shù)圖象上各點(diǎn)向右平移
π
3
個(gè)單位
D、各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
1
2
,再把所得函數(shù)圖象上各點(diǎn)向左平移
π
6
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cosx的圖象上一點(diǎn)(
π
3
1
2
)處的切線(xiàn)的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cosx的圖象向左平移
π
3
個(gè)單位,橫坐標(biāo)縮小到原來(lái)的
1
2
,縱坐標(biāo)擴(kuò)大到原來(lái)的3倍,所得的函數(shù)圖象解析式為
y=3cos(2x+
π
3
)
y=3cos(2x+
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若把函數(shù)y=cosx-
3
sinx+1
的圖象向右平移m(m>0)個(gè)單位,使點(diǎn)(
π
3
,1)
為其對(duì)稱(chēng)中心,則m的最小值是( 。
A、π
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cosx的圖象在點(diǎn)(
π
3
,
1
2
)處的切線(xiàn)方程是
y+
3
2
x-
1
2
-
3
π
6
=0
y+
3
2
x-
1
2
-
3
π
6
=0

查看答案和解析>>

同步練習(xí)冊(cè)答案