P為橢圓+=1上任意一點(diǎn),F1、F2為左、右焦點(diǎn),如圖所示.
(1)若PF1的中點(diǎn)為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點(diǎn)P,使·=0,若存在,求出P點(diǎn)的坐標(biāo), 若不存在,試說明理由
(1)證明:在△F1PF2中,MO為中位線,
∴|MO|==
=a-=5-|PF1|.
(2)解:∵ |PF1|+|PF2|=10,
∴|PF1|2+|PF2|2=100-2|PF1|·|PF2|,
在△PF1F2中,cos 60°=,
∴|PF1|·|PF2|=100-2|PF1|·|PF2|-36,
∴|PF1|·|PF2|=.
(3)解:設(shè)點(diǎn)P(x0,y0),則+=1.①
易知F1(-3,0),F2(3,0),故PF1=(-3-x0,-y0),
PF2=(-3-x0,-y0),
∵PF1·PF2=0,∴-9+=0,②
由①②組成方程組,此方程組無解,故這樣的點(diǎn)P不存在.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知橢圓經(jīng)過點(diǎn),其離心率為.
(1) 求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),以線段為鄰邊作平行四邊形,其中頂點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn).求到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B恰好是拋物線的焦點(diǎn),
離心率等于.直線與橢圓C交于兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點(diǎn)是否可以為的垂心?若可以,求出直線的方程;
若不可以,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的方程為,點(diǎn)分別為其左、右頂點(diǎn),點(diǎn)分別為其左、右焦點(diǎn),以點(diǎn)為圓心,為半徑作圓;以點(diǎn)為圓心,為半徑作圓;若直線被圓和圓截得的弦長之比為;
(1)求橢圓的離心率;
(2)己知,問是否存在點(diǎn),使得過點(diǎn)有無數(shù)條直線被圓和圓截得的弦長之比為;若存在,請(qǐng)求出所有的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知:橢圓的左右焦點(diǎn)為;直線經(jīng)過交橢圓于兩點(diǎn).
(1)求證:的周長為定值.
(2)求的面積的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)、分別是橢圓,的左、右焦點(diǎn),是該橢圓上一個(gè)動(dòng)點(diǎn),且,。
、求橢圓的方程;
、求出以點(diǎn)為中點(diǎn)的弦所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 雙曲線的兩條漸近線的方程為y=±x,且經(jīng)過點(diǎn)(3,-2).(1)求雙曲線的方程;(2)過雙曲線的右焦點(diǎn)F且傾斜角為60°的直線交雙曲線于A、B兩點(diǎn),求|AB|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com