(12分) 雙曲線的兩條漸近線的方程為y=±x,且經(jīng)過點(3,-2).(1)求雙曲線的方程;(2)過雙曲線的右焦點F且傾斜角為60°的直線交雙曲線于A、B兩點,求|AB|.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且

(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

P為橢圓=1上任意一點,F1F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標, 若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線關于y軸對稱,它的頂點在坐標原點,并且經(jīng)過點M(),
求它的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

21.(本小題滿分14分)
已知直線過拋物線的焦點且與拋物線相交于兩點,自向準線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實數(shù)時,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)在平面直角坐標系中,的兩個頂點的坐標分別為,平面內(nèi)兩點同時滿足一下條件:①;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中的軌跡交于兩點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓經(jīng)過點M(-2,-1),離心率為。過點M作傾斜角
互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q。
(I)求橢圓C的方程;
(II)能否為直角?證明你的結論;
(III)證明:直線PQ的斜率為定值,并求這個定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標系中,直線與曲線相交于兩點, 為極點,則的大小為( 。.

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標方程中,曲線C的方程是ρ=4sinθ,過點(4,)作曲線C的切線,則切線長為(   )

A.4 B. C.2 D.2

查看答案和解析>>

同步練習冊答案