.(本題滿分12分)
如圖所示,⊥矩形所在的平面,分別是的中點,

(1)求證:∥平面
(2)求證:;
(3)若,求證:平面⊥平面.
(1)如圖所示,取的中點,連結(jié)、,

則有     ,
是平行四邊形,∴
平面,平面,
∥平面 .   …………………………4分
(2)∵⊥平面,∴,
,∴AB⊥平面,
,即
,∴ .    …………………………8分
(3)∵⊥平面,∴,
的中點,
,即,
,∴⊥平面,
平面 ∴平面⊥平面.  …………… 12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。


 
(1)證明:AB1⊥BC1;

(2)求點B到平面AB1C1的距離;
(3)求二面角C1—AB1—A1的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱錐中,底面
四邊長為1的菱形,, ,
,的中點,的中點
(Ⅰ)證明:直線;
(Ⅱ)求異面直線AB與MD所成角的大。
(Ⅲ)求點B到平面OCD的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:在正方體ABCDA1B1C1D1中,M、N、P分別為所在邊的中點,O為面對角線A1C1的中點.
(1) 求證:面MNP∥面A1C1B;(2) 求證:MO⊥面A1C1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖,在三棱柱中, ,,,點D是上一點,且。

(1)求證:平面平面;
(2)求證:平面;
(3)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在棱長為的正方體中,是線段 中點,.
(Ⅰ) 求證:^;(Ⅱ) 求證:∥平面;
(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,為圓的直徑,點、在圓上,,矩形所在平面和圓所在的平面互相垂直.
(Ⅰ)求證:AD∥平面BCF;
(Ⅱ)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知在三棱錐T-ABC中,TA,TB,TC兩兩垂直,T在地面ABC上的投影為D,給出下列命題:
①TA⊥BC, TB⊥AC, TC⊥AB;
②△ABC是銳角三角形;
;
(注:表示△ABC的面積)
其中正確的是_______(寫出所有正確命題的編號)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在空間四邊形ABCD中,AD=BC=2,E,F分別是AB,CD的中點,若EF=,則異面直線AD與BC所成的角為_______

查看答案和解析>>

同步練習冊答案