已知函數(shù)對任意的滿足,且當時,.若有4個零點,則實數(shù)的取值范圍是   

試題分析:由題意得函數(shù)為偶函數(shù),因此當有4個零點時,上有且僅有兩個零點,所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在直角坐標系中,如果兩點A(a,b),B(-a,-b)函數(shù)y=f(x)的圖象上,那么稱[A,B]為函數(shù)f(x)的一組關于原點的中心對稱點([A,B]與[B,A]看作一組).函數(shù)g(x)=
cos
π
2
x,x≤0
log4(x+1),x>0
關于原點的中心對稱點的組數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=(x+m)2+k-m2的圖象與x軸相交于兩個不同的點A(x1,0)、B(x2,0),與y軸的交點為C.設△ABC的外接圓的圓心為點P.
(1)求⊙P與y軸的另一個交點D的坐標;
(2)如果AB恰好為⊙P的直徑,且△ABC的面積等于,求m和k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,焦點在軸上的橢圓的離心率為,橢圓上異于長軸頂點的任意點與左右兩焦點構成的三角形中面積的最大值為.
(1)求橢圓的標準方程;
(2)已知點,連接與橢圓的另一交點記為,若與橢圓相切時、不重合,連接與橢圓的另一交點記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).設 (max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記的最小值為A,的最大值為B,則(    )
A.16
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若不等式(mx-1)[3m 2-( x + 1)m-1]≥0對任意恒成立,則實數(shù)x的值為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于二次函數(shù)f(x)=ax2+bx+c,有下列命題:
①若f(p)=q,f(q)=p(p≠q),則f(p+q)=-(p+q);
②若f(p)=f(q)(p≠q),則f(p+q)=c;
③若f(p+q)=c(p≠q),則p+q=0或f(p)=f(q).
其中一定正確的命題是________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)),若的定義域和值域均是,則實數(shù)= 

查看答案和解析>>

同步練習冊答案