在△ABC中,AB=5,AC=3,BC=7,則∠BAC=( 。
A、
π
6
B、
π
3
C、
3
D、
6
考點:余弦定理
專題:解三角形
分析:利用余弦定理表示出cos∠BAC,將三邊長代入計算求出cos∠BAC的值,即可確定出∠BAC的度數(shù).
解答:解:∵在△ABC中,AB=c=5,AC=b=3,BC=a=7,
∴由余弦定理得:cos∠BAC=
b2+c2-a2
2bc
=
9+25-49
30
=-
1
2
,
∵∠BAC為△ABC的內(nèi)角,
∴∠BAC=
3

故選:C.
點評:此題考查了余弦定理,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線y=
2
x
與直線y=x-1及x=4所圍成的封閉圖形的面積為( 。
A、2-ln2
B、4-2ln2
C、4-ln2
D、2ln2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將兩數(shù)a=88,b=99交換,使a=99,b=88.下面語句正確的一組是(  )(注:框圖中的賦值符號“=”也可以寫成“←”或“:=”)
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(x+
π
4
)•sinx
,則函數(shù)f(x)的圖象( 。
A、關于直線x=
π
8
對稱
B、關于點直線(
π
8
,-
2
4
)對稱
C、最小正周期為T=2π
D、在區(qū)間(0,
π
8
)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,b2-a2-c2=
3
ac,則∠B的大小( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線x2=4y的焦點F作直線AB,CD與拋物線交于A,B,C,D四點,且AB⊥CD,則
FA
FB
+
FC
FD
的最大值等于( 。
A、-4B、-16C、4D、-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-3<x<3},B={x|x>1},則集合A∩B為( 。
A、[0,3)
B、[1,3)
C、(1,3)
D、(-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的半徑為2,PA、PB為該圓的兩條切線,A、B為兩切點,設∠APO=α,那么2S△PAB
1
tan2α
的最小值為(  )
A、-16+4
2
B、-12+4
2
C、-16+8
2
D、-12+8
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F(c,0)作圓x2+y2=b2的切線FQ(Q為切點)交橢圓于點P,當點Q恰為FP的中點時,橢圓的離心率為(  )
A、
5
3
B、
3
2
C、
1
2
D、
5
2

查看答案和解析>>

同步練習冊答案