如圖所示,設(shè)點(diǎn)F坐標(biāo)為(1,0),點(diǎn)P在y軸上運(yùn)動(dòng),點(diǎn)M在x軸運(yùn)動(dòng)上,其中
PM
PF
=0,若動(dòng)點(diǎn)N滿足條件
PN
=
MP

(Ⅰ)求動(dòng)點(diǎn)N的軌跡E的方程;
(Ⅱ)過(guò)點(diǎn)F(1,0)的直線l和l′分別與曲線E交于A、B兩點(diǎn)和C、D兩點(diǎn),若l⊥l′,試求四邊形ACBD的面積的最小值.
(Ⅰ)設(shè)N(x,y),M(x0,0),P(0,y0),F(xiàn)(1,0),
PM
=(x0,-y0),
PN
=(x,y-y0),
PF
=(1,-y0)
,
PM
PF
=0,得x0+y02=0①
PN
=
MP
,得
PN
+
PM
=0
,得(x+x0,y-2y0)=0,即
x+x0=0
y-2y0=0
,∴
x0=-x
y0=
y
2

代入①得,y2=4x即為所求;
(Ⅱ)設(shè)l方程為y=k(x-1),由
y2=4x
y=k(x-1)
,消去x,得y2-
4
k
-4=0

設(shè)A(x1,y1),B(x2,y2),則y1y2=-4,y1+y2=
4
k
,于是
|AB|=
1+
1
k2
|y1-y2|=
(1+
1
k2
)[(y1+y2)2-4y1y2]
=
(1+
1
k2
)(
16
k2
+16)
=4+
4
k2
,
設(shè)l′的方程為y=-
1
k
(x-1)
,由
y2=4x
y=-
1
k
(x-1)
,消去x,得y2+4ky-4=0.
設(shè)C(x3,y3),D(x4,y4),則y3y4=4,y3+y4=-4k.
|CD|=
1+k2
|y3-y4|=
(1+k2)[(y3+y4)2-4y3y4]

|CD|=4+
4
(-
1
k
)2
=4+4k2

于是SABCD=
1
2
|AB|•|CD|=
1
2
(4+
4
k2
)(4+4k2)

=8(2+k2+
1
k2
)≥8(2+2
k2
1
k2
)=32
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過(guò)點(diǎn)A(2,1),離心率為
2
2
.過(guò)點(diǎn)B(3,0)的直線l與橢圓C交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
BM
BN
的取值范圍;
(Ⅲ)設(shè)直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)(1,0)的距離與到定直線L:x=-1的距離相等,
(1)求曲線C的方程;
(2)直線m過(guò)(-2,1),斜率為k,k為何值時(shí),直線m與曲線C只有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn);沒(méi)有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(文)已知橢圓
x2
36
+
y2
9
=1
的一條弦的中點(diǎn)為P(4,2),求此弦所在直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與拋物線y2=2px(p>0)交于不同的兩點(diǎn)A、B,試確定實(shí)數(shù)a的取值范圍,使|AB|≤2p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A(1,0),定直線l:x=-1,B為l上的一個(gè)動(dòng)點(diǎn),過(guò)B作直線m⊥l,連接AB,作線段AB的垂直平分線n,交直線m于點(diǎn)M.
(1)求點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)N(4,0)作直線h與點(diǎn)M的軌跡C相交于不同的兩點(diǎn)P,Q,求證OP⊥OQ(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線mx+ny=4和⊙O:x2+y2=4相交,則點(diǎn)P(m,n)與橢圓C:
x2
4
+
y2
3
=1的位置關(guān)系為(  )
A.點(diǎn)P在橢圓C內(nèi)B.點(diǎn)P在橢圓C上
C.點(diǎn)P在橢圓C外D.以上三種均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線,q:過(guò)點(diǎn)M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點(diǎn),若p∧q為真命題,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案