數(shù)列{an}是公差不為0的等差數(shù)列,a1=1,且a3是a1,a9的等比中項(xiàng),則數(shù)列{an}的通項(xiàng)公式an=   
【答案】分析:設(shè)公差為d,則由題意可得 (1+2d)2=1×(1+8d),解得d=1,由此求得數(shù)列{an}的通項(xiàng)公式.
解答:解:∵數(shù)列{an}是公差不為0的等差數(shù)列,a1=1,且a3是a1,a9的等比中項(xiàng),設(shè)公差為d,
則有 (1+2d)2=1×(1+8d),解得d=1,故數(shù)列{an}的通項(xiàng)公式an=1+(n-1)×1=n,
故答案為 n.
點(diǎn)評(píng):本題主要考查等比數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,前n項(xiàng)和為Sn,滿足a22+a32=a42+a52,S7=7,則使得
amam+1am+2
為數(shù)列{an}中的項(xiàng)的所有正整數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州一模)數(shù)列{an}是公差不小0的等差數(shù)列a1、a3,是函數(shù)f(x)=1n(x2-6x+6)的零點(diǎn),數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=1-2bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是公差不為0的等差數(shù)列,其前n項(xiàng)和為Sn,且S9=135,a3,a4,a12成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)m,使
a
2
m
+
a
2
m+2
2am+1
仍為數(shù)列{an}中的一項(xiàng)?若存在,求出滿足要求的所有正整數(shù)m;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,它的前n項(xiàng)和為Sn,且S1、S2、S4成等比數(shù)列,則
a4
a1
等于( 。
A、3B、4C、6D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案