【題目】在如圖所示的幾何體中,AE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點(diǎn),AC=BC=1,∠ACB=90°,AE=2CD=2.
證明DF⊥平面ABE;

【答案】解:取AB的中點(diǎn)G,連接CG、FG.
因?yàn)镃D∥AE,GF∥AE,所以CD∥GF.
又因?yàn)镃D=1,,所以CD=GF.
所以四邊形CDFG是平行四邊形,DF∥CG.
在等腰Rt△ACB中,G是AB的中點(diǎn),所以CG⊥AB.
因?yàn)镋A⊥平面ABC,CG平面ABC,所以EA⊥CG.
而AB∩EA=A,所以CG⊥平面ABE.
又因?yàn)镈F∥CG,所以DF⊥平面ABE.

【解析】將DF平移到CG的位置,欲證DF⊥平面ABE,即證CG⊥平面ABE,根據(jù)線面垂直的判定定理可知,只需證CG與平面ABE內(nèi)的兩相交直線垂直即可;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面之間的位置關(guān)系的相關(guān)知識(shí),掌握兩個(gè)平面平行沒(méi)有交點(diǎn);兩個(gè)平面相交有一條公共直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,則b2+c2的取值范圍是(
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.

(1)求圖中a的值,并估計(jì)日需求量的眾數(shù);
(2)某日,經(jīng)銷商購(gòu)進(jìn)130件該種產(chǎn)品,根據(jù)近期市場(chǎng)行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤(rùn)為S元.
(。⿲表示為x的函數(shù);
(ⅱ)根據(jù)直方圖估計(jì)當(dāng)天純利潤(rùn)S不少于3400元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求過(guò)兩點(diǎn)A(1,4)、B(3,2),且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點(diǎn)M1(2,3),M2(2,4)與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.將四邊形ABCD沿對(duì)角線BD折成四面體A′﹣BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是(

A.A′C⊥BD
B.∠BA′C=90°
C.CA′與平面A′BD所成的角為30°
D.四面體A′﹣BCD的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合S={x|x>1},T={x||x﹣1|≤2},則(RS)∪T(
A.(﹣∞,3]
B.[﹣1,1]
C.[﹣1,3]
D.[﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單位向量 , 的夾角為 ,設(shè)向量 =x +y ,x,y∈R,若| |=1,則x+2y的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程是 =1(a>b>0),其右焦點(diǎn)F到橢圓C的其中三個(gè)頂點(diǎn)的距離按一定順序構(gòu)成以 為公差的等差數(shù)列,且該數(shù)列的三項(xiàng)之和等于6.
(1)求橢圓C的方程;
(2)若直線AB與橢圓C交于點(diǎn)A,B(A在第一象限),滿足2 ,當(dāng)△0AB面積最大時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex[x2+(a+1)x+2a﹣1].
(1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實(shí)數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案