【題目】在如圖所示的幾何體中,AE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點,AC=BC=1,∠ACB=90°,AE=2CD=2.
證明DF⊥平面ABE;
【答案】解:取AB的中點G,連接CG、FG.
因為CD∥AE,GF∥AE,所以CD∥GF.
又因為CD=1,,所以CD=GF.
所以四邊形CDFG是平行四邊形,DF∥CG.
在等腰Rt△ACB中,G是AB的中點,所以CG⊥AB.
因為EA⊥平面ABC,CG平面ABC,所以EA⊥CG.
而AB∩EA=A,所以CG⊥平面ABE.
又因為DF∥CG,所以DF⊥平面ABE.
【解析】將DF平移到CG的位置,欲證DF⊥平面ABE,即證CG⊥平面ABE,根據(jù)線面垂直的判定定理可知,只需證CG與平面ABE內(nèi)的兩相交直線垂直即可;
【考點精析】解答此題的關(guān)鍵在于理解平面與平面之間的位置關(guān)系的相關(guān)知識,掌握兩個平面平行沒有交點;兩個平面相交有一條公共直線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,則b2+c2的取值范圍是( )
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.
(1)求圖中a的值,并估計日需求量的眾數(shù);
(2)某日,經(jīng)銷商購進130件該種產(chǎn)品,根據(jù)近期市場行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤為S元.
(ⅰ)將S表示為x的函數(shù);
(ⅱ)根據(jù)直方圖估計當(dāng)天純利潤S不少于3400元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求過兩點A(1,4)、B(3,2),且圓心在直線y=0上的圓的標準方程.并判斷點M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A′﹣BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是( )
A.A′C⊥BD
B.∠BA′C=90°
C.CA′與平面A′BD所成的角為30°
D.四面體A′﹣BCD的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合S={x|x>1},T={x||x﹣1|≤2},則(RS)∪T( )
A.(﹣∞,3]
B.[﹣1,1]
C.[﹣1,3]
D.[﹣1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單位向量 , 的夾角為 ,設(shè)向量 =x +y ,x,y∈R,若| ﹣ ﹣ |=1,則x+2y的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的方程是 =1(a>b>0),其右焦點F到橢圓C的其中三個頂點的距離按一定順序構(gòu)成以 為公差的等差數(shù)列,且該數(shù)列的三項之和等于6.
(1)求橢圓C的方程;
(2)若直線AB與橢圓C交于點A,B(A在第一象限),滿足2 ,當(dāng)△0AB面積最大時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex[x2+(a+1)x+2a﹣1].
(1)當(dāng)a=﹣1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com