已知實數(shù)x,y滿足
x+y≥2
x-y≤2
0≤y≤3
,則目標函數(shù)z=y-x的最大值為
4
4
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.
解答:解:由z=y-x得y=x+z,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=x+z由圖象可知當直線y=x+z經(jīng)過點A時,直線y=x+z的截距最大,
此時z也最大,
y=3
x+y=2
,解得
x=-1
y=3
,即A(-1,3).
將A(-1,3)代入目標函數(shù)z=y-x,
得z=3-(-1)=4.
故答案為:4.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x2
a2
-
y2
b2
=1(a>0,b>0)
,則下列不等式中恒成立的是( 。
A、|y|<
b
a
x
B、y>-
b
2a
|x|
C、|y|>-
b
a
x
D、y<
2b
a
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1.
則z=2x+4y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足
x+2y-2≥0
x≤2
y≤1
z=
|3x+4y-2|
5
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x≥0
y≥0
x+y≤s
y+2x≤4
,當2≤s≤3時,目標函數(shù)z=3x+2y的最大值函數(shù)f(s)的最小值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江一模)已知實數(shù)x,y滿足
x≥1
y≤2
x-y≤0
,則x2+y2的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案