分析 求出f(x)的導數(shù),問題轉(zhuǎn)化為方程x2+(2+a)x+a+b=0有兩個不相同的實數(shù)根,結(jié)合二次函數(shù)的性質(zhì)判斷即可.
解答 解:函數(shù)f(x)有兩個不相同的極值點,
即f′(x)=ex[x2+(2+a)x+a+b]=0有兩個不相同的實數(shù)根x1,x2,
也就是方程x2+(2+a)x+a+b=0有兩個不相同的實數(shù)根,
所以△=(2+a)2-4(a+b)>0;
由于方程f2(x)+(2+a)f(x)+a+b=0的判別式△′=△,
故此方程的兩個解為f(x)=x1或f(x)=x2.
由于函數(shù)y=f(x)的圖象和直線y=x1的交點個數(shù)即為方程f(x)=x1的解的個數(shù),
函數(shù)y=f(x)的圖象和直線y=x2的交點個數(shù)即為方程f(x)=x2的解的個數(shù).
根據(jù)函數(shù)的單調(diào)性以及f(x1)=x1,
可知y=f(x)的圖象和直線y=x1的交點個數(shù)為2,
y=f(x)的圖象和直線y=x2的交點個數(shù)為1.
所以f(x)=x1或f(x)=x2共有三個不同的實數(shù)根,
即關(guān)于x的方程f2(x)+(2+a)f(x)+a+b=0的不同實根個數(shù)為3,
故答案為:3.
點評 本題難度中等偏上,是導數(shù)單調(diào)性、極值點與解一元 二次方程的綜合題目,求解的關(guān)鍵是判斷出函數(shù)的單調(diào)性,并將方程解的個數(shù)問題轉(zhuǎn)化為函數(shù)圖象的交點個數(shù)問題.
科目:高中數(shù)學 來源: 題型:解答題
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{C_{12}^1•C_6^1•C_{20}^1}}{{C_{22}^3-C_{10}^3}}$ | |
B. | $\frac{{C_{12}^1•C_6^1•C_4^1+C_{12}^1•C_6^2}}{{C_{22}^3-C_{10}^3}}$ | |
C. | $\frac{{C_{12}^1•(C_6^1•C_4^1+C_6^2)+C_{12}^2•C_6^1}}{{C_{22}^3-C_{10}^3}}$ | |
D. | $\frac{{C_{22}^3-C_{10}^3-C_{16}^3}}{{C_{22}^3-C_{10}^3}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4$\sqrt{2}$ | C. | 4 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
運動時間 性別 | 運動達人 | 非運動達人 | 合計 |
男生 | 36 | ||
女生 | 26 | ||
合計 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c>a>b | B. | c>b>a | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 5 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com