分析 (1)由題意知是一個(gè)古典概型,由分步計(jì)數(shù)原理知試驗(yàn)發(fā)生的總事件數(shù)是6×6,記“點(diǎn)P落在區(qū)域$\left\{\begin{array}{l}x+y≤6\\ x≥0\\ y≥0\end{array}\right.$內(nèi)”為事件A,事件A包括下列15個(gè)基本事件:15,即可求點(diǎn)P落在區(qū)域$\left\{\begin{array}{l}x+y≤6\\ x≥0\\ y≥0\end{array}\right.$內(nèi)的概率;
(2)在區(qū)間[1,6]上任取兩個(gè)實(shí)數(shù)(m,n),確定平面區(qū)域,求出相應(yīng)的面積,即可求:使方程x2+mx+n2=0有實(shí)數(shù)根的概率.
解答 解:(1)拋擲2次骰子共包括36個(gè)基本事件,每個(gè)基本事件都是等可能的.…(1分)
記“點(diǎn)P落在區(qū)域$\left\{\begin{array}{l}x+y≤6\\ x≥0\\ y≥0\end{array}\right.$內(nèi)”為事件A,…(2分)
事件A包括下列15個(gè)基本事件:15;…(5分)
所以 $P(A)=\frac{15}{36}=\frac{5}{12}$. …(6分)
答:點(diǎn)P落在內(nèi)的概率為$\frac{5}{12}$…(7分)
注:以上評(píng)分,要從嚴(yán),以此引導(dǎo)學(xué)生重視概率題的答題規(guī)范.
如,未記事件A的,扣(1分);不列舉事件A的基本事件的,扣(3分);不答的,扣(1分)
(2)記“方程x2+mx+n2=0有實(shí)數(shù)根”為事件B,…(8分)
在區(qū)間[1,6]上任取兩個(gè)實(shí)數(shù)(m,n),可看作是在區(qū)域D:$\{(m,n)|\left\{\begin{array}{l}{1≤m≤6}\\{1≤n≤6}\end{array}\right.\}$內(nèi)隨機(jī)取一點(diǎn),
每個(gè)點(diǎn)被取到的機(jī)會(huì)是均等的; …(10分)
而事件B發(fā)生,則視作點(diǎn)(m,n),恰好落在區(qū)域d:$\{(m,n)|\left\{\begin{array}{l}{1≤m≤6}\\{1≤n≤6}\\{m≥2n}\end{array}\right.$ …(13分)
所以$P(B)=\frac{4}{25}$…(14分)
答:使方程x2+mx+n2=0有實(shí)數(shù)根的概率為$\frac{4}{25}$…(15分)
點(diǎn)評(píng) 本題考查古典概型、幾何概型的計(jì)算,涉及基本事件的數(shù)目的確定,面積的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com