如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個(gè)室,圖2表示蜂巢有2層共有7個(gè)室,圖3表示蜂巢有3層共有19個(gè)室,圖4表示蜂巢有4層共有37個(gè)室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時(shí)共有    個(gè)室.
【答案】分析:觀察蜂巢的室的規(guī)律,分析相鄰層之間正六邊形總數(shù)之間的關(guān)系,即可得到結(jié)論.
解答:解:觀察可知:第一層,正六邊形總數(shù)為1,
第二層,正六邊形總數(shù)為1+6×1,
第三層,正六邊形總數(shù)為1+6×1+6×2,

第n層,正六邊形總數(shù)為:1+6×1+6×2+…+6(n一1)=1+3n(n一1)=3n2-3n+1
故答案為:3n2-3n+1.
點(diǎn)評(píng):本題考查圖形的變化規(guī)律.解題的關(guān)鍵是發(fā)現(xiàn)規(guī)律,正確運(yùn)用求和公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個(gè)室,圖2表示蜂巢有2層共有7個(gè)室,圖3表示蜂巢有3層共有19個(gè)室,圖4表示蜂巢有4層共有37個(gè)室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時(shí)共有
3n2-3n+1
3n2-3n+1
個(gè)室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個(gè)室,圖2表示蜂巢有2層共有7個(gè)室,圖3表示蜂巢有3層共有19個(gè)室,圖4表示蜂巢有4層共有37個(gè)室. 觀察蜂巢的室的規(guī)律,指出蜂巢有n層時(shí)共有_______個(gè)室.

         

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個(gè)室,圖2表示蜂巢有2層共有7個(gè)室,圖3表示蜂巢有3層共有19個(gè)室,圖4表示蜂巢有4層共有37個(gè)室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時(shí)共有________個(gè)室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建師大附中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個(gè)室,圖2表示蜂巢有2層共有7個(gè)室,圖3表示蜂巢有3層共有19個(gè)室,圖4表示蜂巢有4層共有37個(gè)室.觀察蜂巢的室的規(guī)律,指出蜂巢有n層時(shí)共有    個(gè)室.

查看答案和解析>>

同步練習(xí)冊(cè)答案