19.函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=sin(2x+$\frac{π}{2}$)的圖象,則只需將f(x)的圖象(  )
A.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度

分析 由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式,再根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:由函數(shù)f(x)=Asin(ωx+φ)的圖象可得A=1,
根據(jù)$\frac{T}{4}$=$\frac{1}{4}$$•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,求得ω=2,
再根據(jù)五點(diǎn)法作圖可得2×$\frac{π}{3}$+φ=π,求得φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$)=sin2(x+$\frac{π}{6}$),
∵g(x)=sin(2x+$\frac{π}{2}$)=sin2(x+$\frac{π}{4}$)=sin2(x+$\frac{π}{6}$+$\frac{π}{12}$)=f(x+$\frac{π}{12}$),
∴把f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,可得g(x)的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,將邊長(zhǎng)為2的正六邊形ABCDEF沿對(duì)角線BE翻折,連接AC、FD,形成如圖所示的多面體,且AC=$\sqrt{6}$,
(1)證明:平面ABEF⊥平面BCDE;
(2)求DE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)正三棱柱的側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等,表面積為12+2$\sqrt{3}$,它的三視圖中,俯視圖如圖所示,側(cè)視圖是一個(gè)矩形,則正三棱柱繞上、下底面中心連線旋轉(zhuǎn)30°后的正視圖面積為( 。
A.4B.2$\sqrt{3}$C.2D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)點(diǎn)P為雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2分別是左右焦點(diǎn),I是△PF1F2的內(nèi)心,若△IPF1,△IPF2,△IF1F2的面積S1,S2,S3滿足2(S1-S2)=S3,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.$\frac{32}{3}$B.$\frac{64}{3}$C.32D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=-x3+x2-ax+1是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.[-3,+∞)B.(-∞,-$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.將極坐標(biāo)(4,$\frac{π}{3}$)化為直角坐標(biāo)是( 。
A.(2,2$\sqrt{2}$)B.(2$\sqrt{3}$,2)C.(2,2$\sqrt{3}$)D.(2$\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知角α的終邊經(jīng)過(guò)一點(diǎn)P(5a,-12a)(a>0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列敘述中正確的是(  )
A.命題“?x∈R,x+3>0”的否定是“?x∈R,x+3<0”
B.命題“若α=$\frac{π}{3}$,則cosα=$\frac{1}{2}$”的否命題是“若α=$\frac{π}{3}$,則cosα≠$\frac{1}{2}$”
C.在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)x,則事件“2x≤$\sqrt{2}$”發(fā)生的概率為$\frac{1}{4}$
D.“命題p∧q為真”是“命題p∨q為真”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案