已知{an}是等差數(shù)列,其前n項(xiàng)的和為Sn, {bn}是等比數(shù)列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=anbn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和.
(1)an=n+1,bn=2n;(2)Tn=n·2n+1.
【解析】試題分析:(1)利用數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,得到首項(xiàng)和公比、公差的方程,求出數(shù)列的首項(xiàng)公比和公差,得到數(shù)列的通項(xiàng);(2)本小題是一個(gè)等差與等比的積形成的數(shù)列,可以利用錯(cuò)位相減法求和.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.
由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.
由條件a4+b4=21,S4+b4=30,得方程組解得
所以an=n+1,bn=2n,n∈N*.
(2)由題意知,cn=(n+1)×2n.
記Tn=c1+c2+c3+…+cn.
則Tn=c1+c2+c3+…+cn
=2×2+3×22+4×23+…+n×2n-1+(n+1)×2n,
2 Tn= 2×22+3×23+…+(n-1)×2n-1+n×2n+ (n+1)2n+1,
所以-Tn=2×2+(22+23+…+2n )-(n+1)×2n+1,
即Tn=n·2n+1,n∈N*.
考點(diǎn):等差數(shù)列,等比數(shù)列的通項(xiàng)公式,遞推數(shù)列,錯(cuò)位相減法求和
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在△ABC中,D,E,F(xiàn)分別是BC,CA,AB的中點(diǎn),點(diǎn)M是△ABC的重心,則等于( )
A. B.4 C.4 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=(x<0)與g(x)=的圖象在存在關(guān)于y軸對(duì)稱點(diǎn),則a的取值范圍是( )
A、 B、 C、 D、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)向量,滿足,,則 = ( )
A.1 B.2 C.3 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知O為坐標(biāo)原點(diǎn),點(diǎn)M(3,2),若N(x,y)滿足不等式組,則 的最大值為 _________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=sin(2πx+φ)的部分圖象如圖所示,點(diǎn)B,C是該圖象與x軸的交點(diǎn),過點(diǎn)C的直線與該圖象交于D,E兩點(diǎn),則()•的值為( )
A. B. C.1 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省成都實(shí)驗(yàn)外國語高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)復(fù)數(shù),其中,則______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com