14.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(0,+∞)上單調(diào),f(2)>0>f(1),則函數(shù)f(x)的零點個數(shù)為(  )
A.0B.1C.2D.3

分析 利用函數(shù)的奇偶性以及函數(shù)的單調(diào)性,判斷函數(shù)的零點個數(shù)即可.

解答 解:函數(shù)f(x)是定義在R上的奇函數(shù),可知f(0)=0,
在區(qū)間(0,+∞)上單調(diào),f(2)>0>f(1),
可知:x>0時,函數(shù)有一個零點,對稱區(qū)間上也有一個零點,
共有3個零點.
故選:D.

點評 本題考查函數(shù)的奇偶性以及函數(shù)的單調(diào)性,函數(shù)的零點個數(shù)的判斷,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足,a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$,(n≥3,n∈N*).則a2016=( 。
A.1B.2C.$\frac{1}{2}$D.2-2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此規(guī)律,若$\sqrt{9+\frac{9}{m}}$=$9\sqrt{\frac{9}{m}}$,則m的值為80.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在底面是菱形的四棱錐P-ABCD中,點E在PD上,且滿足PE:ED=2:1,PA=AB=2,PA⊥底面ABCD,∠ABC=60°
(1)在棱PC上是否存在一點F,使BF∥平面AEC,若存在,求出PF的長度.
(2)求二面角P-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合U={1,2,3,4},集合A={1,3,4},B={2,4},則集合(∁UA)∪B=( 。
A.{2}B.{4}C.{1,3}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{x}$,若f'(x0)=$\frac{1}{8}$,則x0的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0),且sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{10}}{10}$,則α-β的值為$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.一條河的兩岸平行,河水的流速為2m/s,一艘小船以10m/s的速度向垂直于對岸的方向行駛,求小船在靜水中的速度大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=x2-(4a+1)x+3a2+3a的圖象與x軸交于A、B兩點,若兩點間的距離等于2,則a的值為( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$或-$\frac{1}{2}$D.$\frac{3}{2}$或-$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案