在平面直角坐標系中,△ABC的兩個頂點A,B的坐標分別為A(-1,0),B(1,0),平面
內(nèi)兩點G,M同時滿足下列條件①=0;②||=||=||;③.(Ⅰ)求△ABC的頂點C的軌跡方程;(Ⅱ)是否存在過點P(3,0)的直線l與(Ⅰ)中軌跡交于E、F兩點,且OE⊥OF?若存在,求出直線l斜率k的值;若不存在,說明理由.
(Ⅰ)    (Ⅱ)   
(I)設  , 點在線段的中垂線上
由已知;又,.
,,
.
  ,
 ,頂點的軌跡方程為 
(II)設直線方程為:,,,
  消去得: ①
 ,      .
    ∴  又
, 解得:
由方程①知,,
故符合條件的直線存在,斜率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓與雙曲線均為正數(shù))有共同的焦點F1,F2,P是兩曲線的一個公共點,則等于           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點。
(1)用表示A,B之間的距離;
(2)證明:的大小是與無關的定值,并求出這個值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面內(nèi)稱橫坐標為整數(shù)的點為“次整點”.過函數(shù)圖象上任意兩個次整點作直線,則傾斜角大于45°的直線條數(shù)為.
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P(8,1)平分雙曲線x2-4y2=4的一條弦,則這條弦所在直線的斜率是_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,直線,為平面上的動點,過點作直線的垂線,垂足為,且
(1)求動點的軌跡的方程;
(2)已知圓過定點,圓心在軌跡上運動,且圓軸交于、兩點,設,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面中,的兩個頂點分別的坐標為,,平面內(nèi)兩點同時滿足下列條件:
;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中軌跡交于兩點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線與雙曲線沒有公共點,則實數(shù)的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知P是雙曲線上的動點,F(xiàn)1、F2分別是其左、右焦點,O為坐標原點,則的取值范圍是         。

查看答案和解析>>

同步練習冊答案