在△ABC中,若cosA=
,cosB=
, 試判斷三角形的形狀.
∵在△ABC中,若cosA=
>0 ,cosB=
>0 ∴A,B為銳角
sinA=
=
sinB=
=
∵ cosC=cos[
-(A+B)]=-cos(A+B)=-(cosAcosB-sinAsinB)=
< 0
∴
< C <
即C為鈍角
∴△ABC為鈍角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在⊿
中,內(nèi)角
的對邊分別是
,已知
.
(Ⅰ)試判斷⊿
的形狀;(Ⅱ)若
求角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在
中,角
所對的邊分別為
,且
.
(1)求
的大;
(2)若
,
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在△ABC中,
,判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設(shè)∠AOP=
,求△POC面積的最大值及此時
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在△ABC中,a2=b2+c2+bc,則角A= .
查看答案和解析>>