分析 設x>0,則-x<0,運用已知解析式和奇函數(shù)的定義,可得x>0的解析式,求得導數(shù),代入x=1,計算即可得到所求切線的斜率.
解答 解:設x>0,則-x<0,f(-x)=e-x+x2,
由f(x)為奇函數(shù),可得f(-x)=-f(x),
即f(x)=-e-x-x2,x>0.
導數(shù)為f′(x)=e-x-2x,
則曲線y=f(x)在x=1處的切線斜率為$\frac{1}{e}$-2.
故答案為:$\frac{1}{e}$-2.
點評 本題考查函數(shù)的奇偶性的定義的運用:求解析式,考查導數(shù)的運用:求切線的斜率,求得解析式和導數(shù)是解題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{23}{24}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({\frac{1}{e},e})$ | B. | $({\frac{1}{2e},\frac{1}{e}})$ | C. | $({-∞,\frac{1}{2e}})$ | D. | $({\frac{1}{2e},+∞})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com