已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)圖象如圖所示
①函數(shù)y=f(x)在x=-3,x=3處有極小值
②函數(shù)y=f(x)在區(qū)間(0,1)上單調(diào)遞減
③函數(shù)y=f(x)在區(qū)間(2,3)上單調(diào)遞增
④函數(shù)y=f(x)在x=-1,x=1處有極大值
⑤函數(shù)y=f(x)在區(qū)間(-3,1)上單調(diào)遞增
則以上結(jié)論正確的序號(hào)是:
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:結(jié)合函數(shù)的圖象得出:f(x)在(-∞,-3)遞減,在(-3,1)遞增,f(x)在(1,3)遞減,在(3,+∞)遞增,從而逐項(xiàng)判斷,進(jìn)而得出答案.
解答: 解:∵在區(qū)間(-∞,-3)上,f′(x)<0,在(-3,1)上,f(x)≥0,
∴f(x)在(-∞,-3)遞減,在(-3,1)遞增,
∴f(x)極小值=f(-3),
∵在區(qū)間(1,3)上,f′(x)<0,在(3,+∞)上,f′(x)>0,
∴f(x)在(1,3)遞減,在(3,+∞)遞增,
∴f(x)極小值=f(3),
故①⑤正確,②③④錯(cuò)誤;
故答案為:①⑤.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,函數(shù)的極值問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)某中學(xué)高二年級(jí)學(xué)生是愛好體育還是愛好文娛進(jìn)行調(diào)查,共調(diào)查了40人,所得2×2列聯(lián)表如下:
愛好類型
性別

愛 好 體 育

愛 好 文 娛

合   計(jì)
男  生15AB
女  生C10D
合  計(jì)20E40
(1)將2×2列聯(lián)表A、B、C、D、E三處補(bǔ)充完整;
(2)若已選出指定的三個(gè)男生甲、乙、丙,兩個(gè)女生M,N,現(xiàn)從中選兩人參加某項(xiàng)活動(dòng),求選出的兩個(gè)人恰好是一男一女的概率;
(3)是否有85%的把握認(rèn)為性別與愛好體育有關(guān)系?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

參考數(shù)據(jù):
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-4,3)
(1)求 sinθ、cosθ、tanθ;    
(2)求 
cos(θ-
π
2
)
sin(
π
2
+θ)
sin(θ+π)cos(2π-θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是在R上的奇函數(shù),且為減函數(shù),f(2a2+a+1)+f(2a-3a2-1)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ) 比較下列兩組實(shí)數(shù)的大。孩
2
-1與2-
3
; ②2-
3
6
-
5

(Ⅱ) 類比以上結(jié)論,寫出一個(gè)更具一般意義的結(jié)論..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ
=
 
.其中θ∈(
π
2
,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
6
+
y2
2
=1,M為橢圓上的一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的左、右兩個(gè)焦點(diǎn),且滿足|MF1|-|MF2|=2
3
,則cos∠F1MF2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五種說法:
①函數(shù)y=sin(
π
2
+x)(k∈Z)是奇函數(shù)
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)對(duì)稱;
③函數(shù)y=cos2x+sinx的最小值為-1.
④log4(1+tan1°)+log4(1+tan2°)+log4(1+tan3°)+…+log4(1+tan44°)=11
⑤函數(shù)f(x)=sinx-lgx在定義域上有一個(gè)零點(diǎn); 
其中正確的是
 
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<θ<
π
2
,已知a1=2cosθ,an+1=
2+an
,猜想an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案