據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在6千元的基礎(chǔ)上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(dòng)(x為月份),已知3月份達(dá)到最高價(jià)8千元,7月份價(jià)格最低為4千元;該商品每件的售價(jià)為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫(xiě)出該商品每件的出廠價(jià)函數(shù)f(x)、售價(jià)函數(shù)g(x)的解析式;
(2)問(wèn)哪幾個(gè)月能盈利?
【答案】分析:(1)由題意要建立形如:f(x)=Asin(ωx+φ)+B,的三角函數(shù)模型,則根據(jù)各參數(shù)的意義求解.
(2)要盈利的話則須售價(jià)高于出廠從,即由g(x)>f(x),建立三角不等式sinx<求解.
解答:解:(1)f(x)=Asin(ωx+φ)+B,由題意可得A=2,
B=6,ω=,φ=-,
所以f(x)=2sin(x-)+6(1≤x≤12,x為正整數(shù)),
g(x)=2sin(x-π)+8(1≤x≤12,x為正整數(shù)).
(2)由g(x)>f(x),得sinx<
2kπ+π<x<2kπ+π,k∈Z,
∴8k+3<x<8k+9,k∈Z,
∵1≤x≤12,k∈Z,∴k=0時(shí),3<x<9,
∴x=4,5,6,7,8;
k=1時(shí),11<x<17,∴x=12.
∴x=4,5,6,7,8,12.
即其中4,5,6,7,8,12月份能盈利.
點(diǎn)評(píng):本題主要考查三角函數(shù)實(shí)際應(yīng)用模型,從根本上來(lái)考查f(x)=Asin(ωx+φ)+B,各參數(shù)的意義,同時(shí)還考查了三角不等式,求解時(shí)可選用三角函數(shù)線,也可選用三角函數(shù)的圖象.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在6千元的基礎(chǔ)上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(dòng)(x為月份),已知3月份達(dá)到最高價(jià)8千元,7月份價(jià)格最低為4千元;該商品每件的售價(jià)為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫(xiě)出該商品每件的出廠價(jià)函數(shù)f(x)、售價(jià)函數(shù)g(x)的解析式;
(2)問(wèn)哪幾個(gè)月能盈利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在7千元的基礎(chǔ)上,按月呈f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
(A>0,ω>0,|φ|<
π
2
)
的模型波動(dòng)(x為月份,1≤x≤12,x∈N*),已知3月份達(dá)到最高價(jià)9千元,7月份價(jià)格最低為5千元,根據(jù)以上條件可確定f(x)的解析式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•佛山二模)據(jù)市場(chǎng)調(diào)查,某種商品一年中12個(gè)月的價(jià)格與月份的關(guān)系可以近似地用函數(shù)f(x)=Asin(ωx+φ)+7(A>0,ω>0,|φ|<
π
2
)來(lái)表示(x為月份).已知3月份達(dá)到最高價(jià)9千元,7月份價(jià)格最低為5千元,則國(guó)慶期間的價(jià)格約為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省泉州市永春六中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在7千元的基礎(chǔ)上,按月呈的模型波動(dòng)(x為月份,1≤x≤12,x∈N*),已知3月份達(dá)到最高價(jià)9千元,7月份價(jià)格最低為5千元,根據(jù)以上條件可確定f(x)的解析式為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案