18.空間四點(diǎn)A、B、C、D滿足|$\overline{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值為( 。
A.只有一個(gè)B.有二個(gè)C.有四個(gè)D.有無(wú)窮多個(gè)

分析 先把ABCD看成是平面圖形,過(guò)B作BE垂直AC,過(guò)D作DF垂直AC,運(yùn)用勾股定理,可得E,F(xiàn)重合,再將圖形沿AC或BD折起,便是空間圖形,運(yùn)用線面垂直的判定和性質(zhì),得AC⊥BD,再由向量數(shù)量積的性質(zhì),即可得到答案.

解答 解:由|$\overline{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,
知AB2+CD2=BC2+DA2=130,
BC2-AB2=CD2-DA2
先把ABCD看成是平面圖形,
過(guò)B作BE垂直AC,過(guò)D作DF垂直AC,
則AB2=AE2+BE2,BC2=CE2+BE2,
則BC2-AB2=CE2-AE2
同理CD2-DA2=CF2-AF2,即CF2-AF2=CE2-AE2,
又因?yàn)锳,E,F(xiàn),C在一條直線上,
所以滿足條件的只能是E,F(xiàn)重合,即有AC垂直BD,
再將圖形沿AC或BD折起,便是空間圖形;
由AC⊥BE,AC⊥DE,即有AC⊥平面BDE,則AC⊥BD,
即$\overrightarrow{AC}$•$\overrightarrow{BD}$=0,所以$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值只有一個(gè).
故選:A.

點(diǎn)評(píng) 本題考查了空間中直線和平面的位置關(guān)系,以及向量的數(shù)量積的應(yīng)用問(wèn)題,也考查了空間想象能力,是中檔題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2+ax+20(a∈R),若對(duì)于任意x>0,f(x)≥4恒成立,則a的取值范圍是[-8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|-1<x<4},B={x|-2<x<3},則A∩B=( 。
A.{x|-1<x<3}B.{x|0≤x≤2}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義代數(shù)運(yùn)算a?b=$\sqrt{1-\frac{1}{2}ab}$-ka-2,則當(dāng)方程x?x=0有兩個(gè)不同解時(shí),實(shí)數(shù)k的取值范圍是( 。
A.$(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$B.$[-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2}]$C.$[-\sqrt{2},-\frac{{\sqrt{6}}}{2}]∪[\frac{{\sqrt{6}}}{2},\sqrt{2}]$D.$[\frac{{\sqrt{6}}}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某幾何體的三視圖如圖所示(均為直角邊長(zhǎng)為2的等腰直角三角形),則該幾何體的表面積為( 。
A.4+4$\sqrt{2}$B.4+4$\sqrt{3}$C.6+2$\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若某三棱錐的三視圖如圖所示,則該棱錐的體積為$\frac{\sqrt{3}}{3}$,表面積為3$+\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)$y=\frac{{{2^x}-1}}{{{2^x}+1}}$的圖象關(guān)于( 。
A.x軸對(duì)稱B.y軸對(duì)稱C.原點(diǎn)對(duì)稱D.直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面ABCD是矩形,側(cè)面PAD是等腰三角形∠APD=90°,且平面PAD⊥平面ABCD
(Ⅰ)求證:PA⊥PC;
(Ⅱ)若AD=2,AB=4,求三棱錐P-ABD的體積;
(Ⅲ)在條件(Ⅱ)下,求四棱錐P-ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知直線l1:(k-3)x+(4-k)y+1=0與l2:(k-3)x-y+1=0平行,則k的值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案