已知a1=
12
,且Sn=n2an(n∈N*
(1)求a2,a3,a4
(2)猜測{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明之.
分析:(1)利用數(shù)列的前n項(xiàng)和與第n項(xiàng)的關(guān)系,得到關(guān)于數(shù)列的遞推關(guān)系式,即可求得此數(shù)列的前幾項(xiàng).
(2)用數(shù)學(xué)歸納法證明數(shù)列問題時(shí)分為兩個(gè)步驟,第一步,先證明當(dāng)當(dāng)n=1時(shí),結(jié)論顯然成立,第二步,先假設(shè)當(dāng)n=k+1時(shí),有ak=
1
k(k+1)
,利用此假設(shè)證明當(dāng)n=k+1時(shí),結(jié)論也成立即可.
解答:解:∵Sn=n2an,∴an+1=Sn+1-Sn=(n+1)2an+1-n2an
an+1=
n
n+2
an

∴(1)a2=
1
6
,a3=
1
12
,a4=
1
20

(2)猜測an=
1
n(n+1)
;下面用數(shù)學(xué)歸納法證
①當(dāng)n=1時(shí),結(jié)論顯然成立.
②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即ak=
1
k(k+1)

則當(dāng)n=k+1時(shí),ak+1=
k
k+2
ak=
k
k+2
×
1
k(k+1)
=
1
(k+1)(k+2)

故當(dāng)n=k+1時(shí)結(jié)論也成立.
由①、②可知,對(duì)于任意的n∈N*,都有an=
1
n(n+1)
點(diǎn)評(píng):本題主要考查數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的基本形式
設(shè)P(n)是關(guān)于自然數(shù)n的命題,若
1°P(n0)成立(奠基)
2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè){an}是集合{2s+2t|0≤s<t且s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…將數(shù)列{an}各項(xiàng)按照上小下大,左小右大的原則寫成如下的三角形數(shù)表:
3
5     6
9     10    12
------------

①寫出這個(gè)三角形數(shù)表的第四行、第五行各數(shù);
②求a100
(2)設(shè){bn}是集合{2r+2s+2t|0≤r<s<t,且r,s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,已知bk=1160,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一列非零向量
an
,n∈N*,滿足:
a1
=(10,-5),
an
=(xn,yn)=k(xn-1-yn-1xn-1+yn-1)
,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{|
an
|}是的通項(xiàng)公式;
(2)求向量
an-1
an
的夾角;(n≥2);
(3)當(dāng)k=
1
2
時(shí),把
a1
,
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成一列,記為
b1
,
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t
,
lim
n→∞
sn=s
,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知S(x)=a1x+a2x2+…+anxn,且a1,a2,…,an組成等差數(shù)列,n為正偶數(shù),設(shè)S(1)=n2,S(-1)=n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明S(
12
)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一列非零向
an
滿足:
a1
=(x1,y1),
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn-1+yn-1)(n≥2)

(Ⅰ)證明:{|
an
|}
是等比數(shù)列;
(Ⅱ)求向量
a
n-1
a
n
的夾角(n≥2)

(Ⅲ)設(shè)
a
1
=(1,2),把
a1
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成
一列,記為
b1
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).
(注:若點(diǎn)Bn坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,則稱點(diǎn)B(t,s)為點(diǎn)列{Bn}
的極限點(diǎn).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案