1.以等腰直角三角形ABC斜邊AB的中線CD為棱,將△ABC折疊,使平面ACD⊥平面BCD,則AC與BC的夾角為( 。
A.30°B.60°C.90°D.不確定

分析 先判斷折疊后△ACD,△BCD,△ABD的形狀,進(jìn)而判斷出△ABC的形狀,從而可得答案.

解答 解:如圖所示:

折疊后∠ACD=∠BCD=45°,AD⊥CD,BD⊥CD,則∠ADB為二面角A-CD-B的平面角,
又平面ACD⊥平 面BCD,所以∠ADB=90°,所以△ADB為等腰直角三角形,
設(shè)AD=1,則AC=BC=AB=$\sqrt{2}$,所以△ABC為正三角形,
所以∠ACB=60°.
故選:B.

點評 本題考查的是翻折變換的性質(zhì),熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等的知識是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側(cè)棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某消費(fèi)品專賣店的經(jīng)營資料顯示如下:
①這種消費(fèi)品的進(jìn)價為每件14元;
②該店月銷售量Q(百件)與銷售價格P(元)滿足的函數(shù)關(guān)系式為Q=$\left\{\begin{array}{l}{k_1}P+{b_1},14≤P≤20\\{k_2}P+{b_2},20<P≤26\end{array}$,點(14,22),(20,10),(26,1)在函數(shù)的圖象上;
③每月需各種開支4400元.
(1)求月銷量Q(百件)與銷售價格P(元)的函數(shù)關(guān)系;
(2)當(dāng)商品的價格為每件多少元時,月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax,x∈R
(1)若a=2,求曲線f(x)在點(0,f(0))處的切線方程;
(2)當(dāng)a>1時,求函數(shù)f(x)在[0,a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法正確的是(  )
A.正方形的直觀圖可能是平行四邊形
B.梯形的直觀圖可能是平行四邊形
C.矩形的直觀圖可能是梯形
D.互相垂直的兩條直線的直觀圖一定是互相垂直的兩條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.四棱錐P-BCDE,底面BCDE為等腰梯形,CB∥DE,PO⊥底面BCDE,F(xiàn)為PB中點,O為BC中點,PO=$\sqrt{3}$,BC=4,DE=CD=BE=2
(1)求證:EF∥平面PCD;
(2)求平面POD與平面PBE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式-2x2+x<-3的解集是(  )
A.$({-1,\frac{3}{2}})$B.$({-∞,-1})∪({\frac{3}{2},+∞})$C.$({1,\frac{3}{2}})$D.$({-∞,1})∪({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知拋物線C:y2=2px(p>0),直線l與拋物線交于兩點A、B,若OA⊥OB.
(Ⅰ)求證:直線l過定點;
(Ⅱ)若p=2時,求弦AB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則|z|=( 。
A.0B.$\sqrt{2}$C.2D.1

查看答案和解析>>

同步練習(xí)冊答案