4.設(shè)集合A={x∈N|$\frac{6}{x+1}$∈N},B={x|y=ln(x-l)),則A={0,1,2,5},B={x|x>1},A∩(∁RB)={0,1}.

分析 根據(jù)x∈N,$\frac{6}{x+1}$∈N,確定出A,求出B中x的范圍確定出B,找出A與B補(bǔ)集的交集即可.

解答 解:由x∈N,$\frac{6}{x+1}$∈N,得到x=0,1,2,5,即A={0,1,2,5},
由B中y=ln(x-1),得到x-1>0,即x>1,
∴B={x|x>1},∁RB={x|x≤1},
則A∩(∁RB)={0,1},
故答案為:{0,1,2,5};{x|x>1};{0,1}

點(diǎn)評 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}({n≥1,n∈{N^*}})$,數(shù)列{bn}是以1為首項(xiàng),2公比的等比數(shù)列.
(Ⅰ)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(Ⅱ)求數(shù)列$\left\{{\frac{b_n}{a_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,BC=2,若對任意的實(shí)數(shù)t,|t$\overrightarrow{AB}$+(1-t)$\overrightarrow{AC}$|≥|t0$\overrightarrow{AB}$+(l-t0)$\overrightarrow{AC}$|=3(t0∈R),則$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值為8,此時(shí)t0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)$Q({-2\sqrt{2},0})$及拋物線x2=-4y上一動點(diǎn)P(x,y),則|y|+|PQ|的最小值是( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了解市場上某品牌中性筆替芯的質(zhì)量情況,現(xiàn)隨機(jī)抽取100支進(jìn)行研究,其中合格品為80支.
(1)根據(jù)產(chǎn)品質(zhì)量按分層抽樣的方法從這100只中抽取10支,甲,乙同學(xué)從抽出的10支中隨機(jī)取3支,求恰有2支合格的概率.
(2)以隨機(jī)抽取的100支中合格品的頻率作為該產(chǎn)品的合格率,甲乙兩同學(xué)分別在市場上購得該品牌替芯2支,設(shè)兩人購得的合格品數(shù)分別為x,y,記隨機(jī)變量X=|x-y|,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知滿足$\left\{\begin{array}{l}{x+y-3≤0}\\{2x-y≥0}\end{array}\right.$的點(diǎn)P(x,y)不在函數(shù)y=ax的圖象上,則實(shí)數(shù)a的取值范圍為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若z=$\frac{i}{1-i}$,則z$\overline{z}$=( 。
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.兩個(gè)向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$-2$\overrightarrow$|=1,|2$\overrightarrow{a}$+3$\overrightarrow$|=$\frac{1}{3}$,則(5$\overrightarrow{a}$-3$\overrightarrow$)•($\overrightarrow{a}$-9$\overrightarrow$)的值為$\frac{80}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={0,2,4,6,8},從集合A中取出兩個(gè)元素組成集合B,試寫出所有的集合B.

查看答案和解析>>

同步練習(xí)冊答案