【題目】已知曲線,,則下面結(jié)論正確的是( )

A. 上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線

C. 上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

D. 上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線

【答案】C

【解析】

直接利用三角函數(shù)圖像的平移變換和伸縮變換的應(yīng)用求出結(jié)果.

對于選項A,上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線,所以選項A是錯誤的;

對于選項B,上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線,所以選項B是錯誤的;

對于選項C,曲線,把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,得到,再把得到的曲線向右平移個單位長度,得到曲線,所以選項C是正確的;

對于選項D,上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線,所以選項D是錯誤的.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)分別做下面這道題目:在平面直角坐標(biāo)系中,動點的距離比軸的距離大,求的軌跡.甲同學(xué)的解法是:解:設(shè)的坐標(biāo)是,則根據(jù)題意可知

,化簡得; ①當(dāng)時,方程可變?yōu)?/span>;②這表示的是端點在原點、方向為軸正方向的射線,且不包括原點; ③當(dāng)時,方程可變?yōu)?/span> ④這表示以為焦點,以直線為準(zhǔn)線的拋物線;⑤所以的軌跡為端點在原點、方向為軸正方向的射線,且不包括原點和以為焦點,以直線為準(zhǔn)線的拋物線. 乙同學(xué)的解法是:解:因為動點的距離比軸的距離大. ①如圖,過點軸的垂線,垂足為. .設(shè)直線與直線的交點為,則 ②即動點到直線的距離比軸的距離大; ③所以動點的距離與到直線的距離相等;④所以動點的軌跡是以為焦點,以直線為準(zhǔn)線的拋物線; ⑤甲、乙兩位同學(xué)中解答錯誤的是________(填或者),他的解答過程是從_____處開始出錯的(請在橫線上填寫① 、②、③、④ 或⑤ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為,軸,直線軸于點,為橢圓上的動點,的面積的最大值為1.

(1)求橢圓的方程;

(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為

A. 2B. 3C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓C過點

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過橢圓C的右焦點的直線l與橢圓C交于A、B兩點,且與圓:交于E、F兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點,焦點,圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P

①若直線l與橢圓C有且只有一個公共點,求點P的坐標(biāo);

②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5分)《九章算術(shù)》竹九節(jié)問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )

A. 1B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點P(0,1)且互相垂直的兩條直線分別與圓O:交于點A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點C,D.

(1)若AB=,求CD的長;

(2)若CD中點為E,求△ABE面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案