9.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=x+y的最大值為( 。
A.-3B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

分析 由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$作出可行域如圖,
化目標函數(shù)z=x+y為y=-x+z,
由圖可知,當直線y=-x+z過A時,z取得最大值,
由$\left\{\begin{array}{l}{x+2y-2=0}\\{x-2y=0}\end{array}\right.$,解得A(1,$\frac{1}{2}$)時,
目標函數(shù)有最大值,為z=1+$\frac{1}{2}$=$\frac{3}{2}$.
故選:D.

點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD,底面ABCD為矩形,AB=PA=$\sqrt{3}$,AD=2,PB=$\sqrt{6}$,E為PB中點,且AE⊥PC.
(1)求證:PA⊥平面ABCD;
(2)線段BC上是否存在點M使得二面角P-MD-A的大小為60°?若存在,求出BM的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是某幾何體的三視圖,其正視圖,側(cè)視圖均為直徑為2的半圓,俯視圖是直徑為2的圓,則該幾何體的表面積為( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)對定義域內(nèi)的任意x1,x2,當f(x1)=f(x2)時,總有x1=x2,則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù),下列命題:
①函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是單純函數(shù);
②當a>-2時,函數(shù)$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是單純函數(shù);
③若函數(shù)f(x)為其定義域內(nèi)的單純函數(shù),x1≠x2,則f(x1)≠f(x2);
④若函f(x)數(shù)是單純函數(shù)且在其定義域內(nèi)可導(dǎo),則在其定義域內(nèi)一定存在x0使其導(dǎo)數(shù)f'(x0)=0.
其中正確的命題為①③.(填上所有正確的命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若a1=1,對任意的n∈N*,都有an>0,且nan+12-(2n-1)an+1an-2an2=0設(shè)M(x)表示整數(shù)x的個位數(shù)字,則M(a2017)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$f(x)=cos2x+acos({\frac{π}{2}+x})$在區(qū)間$({\frac{π}{6},\frac{π}{2}})$上是增函數(shù),則實數(shù)a的取值范圍為( 。
A.[-2,+∞)B.(-2,+∞)C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|x-2|+2x-3,記f(x)≤-1的解集為M.
(Ⅰ)求M;
(Ⅱ)當x∈M時,證明:x[f(x)]2-x2f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從數(shù)字1,2,3,4中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),這個兩位數(shù)大于20的概率是( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,則g(-8)=( 。
A.-2B.-3C.2D.3

查看答案和解析>>

同步練習(xí)冊答案