已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點(diǎn)分別為

(1)求橢圓方程;

(2)若直線軸交于點(diǎn)T,P為上異于T的任一點(diǎn),直線分別與橢圓交于M、N兩點(diǎn),試問直線MN是否通過橢圓的焦點(diǎn)?并證明你的結(jié)論.

 

【答案】

(1)     (2)見解析

【解析】(1)由e和a的值,可求出a,c進(jìn)而求出b,所以橢圓的標(biāo)準(zhǔn)方程確定.

(2)設(shè),直線的方程為,與橢圓方程聯(lián)立解方程組可得

M的坐標(biāo),同理由直線的方程可求出N的坐標(biāo).可求出MN的方程,再令y=0,得直線MN與x軸的交點(diǎn)坐標(biāo)它與右焦點(diǎn)坐標(biāo)為重合,可求出t值,若滿足t>2,則存在,否則不存在

(1)由已知橢圓C的離心率,可得

橢圓的方程為

(2)設(shè),直線斜率為

則直線的方程為

,解得

點(diǎn)坐標(biāo)為

同理,設(shè)直線的斜率為    則點(diǎn)坐標(biāo)為(,

由直線與直線的交點(diǎn)在直線

,

的方程為      令,得

即直線MN與軸交點(diǎn)為       又

又橢圓右焦點(diǎn)為,故當(dāng)過橢圓的焦點(diǎn)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年四川省資陽市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)經(jīng)過(1,1)與()兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足|MA|=|MB|.求證:++為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高考數(shù)學(xué)壓軸卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點(diǎn)A,并與橢圓C交與不同的兩點(diǎn)P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點(diǎn),則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年吉林省高考數(shù)學(xué)仿真模擬試卷9(理科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
(1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點(diǎn),求e的大小;
(2)在(1)的條件下,設(shè)橢圓的上頂點(diǎn)為A,左焦點(diǎn)為F,過點(diǎn)A與AF垂直的直線交x軸的正半軸于B點(diǎn),過A、B、F三點(diǎn)的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)總復(fù)習(xí)備考綜合模擬試卷(3)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
(1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點(diǎn),求e的大;
(2)在(1)的條件下,設(shè)橢圓的上頂點(diǎn)為A,左焦點(diǎn)為F,過點(diǎn)A與AF垂直的直線交x軸的正半軸于B點(diǎn),過A、B、F三點(diǎn)的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案