精英家教網 > 高中數學 > 題目詳情

【題目】已知在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C1的極坐標方程為ρ=4cosθ,直線l的參數方程為 (t為參數).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數方程為 (α為參數),曲線C1上點P的極角為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.

【答案】
(1)解:曲線C1的極坐標方程為ρ=4cosθ,即ρ2=4ρcosθ,

可得直角坐標方程:

直線l的參數方程為 (t為參數),

消去參數t可得普通方程:x+2y﹣3=0


(2)解: ,直角坐標為(2,2), ,

∴M到l的距離 ,

從而最大值為


【解析】(1)曲線C1的極坐標方程為ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐標方程.直線l的參數方程為 (t為參數),消去參數t可得普通方程.(2) ,直角坐標為(2,2), ,利用點到直線的距離公式及其三角函數的單調性可得最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對數的底數.
(1)設g(x)是函數f(x)的導函數,求函數g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數f(x)在區(qū)間(0,1)內有零點,證明:e﹣2<a<1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4

(1)求橢圓C的方程;
(2)設F1 , F2分別為橢圓C的左,右焦點,過F2作直線l(與x軸不重合)交于橢圓于A,B兩點,線段AB的中點為E,記直線F1E的斜率為k,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a>0且a≠1,函數f(x)=x2-(a+1)xalnx.

(1)當a=2時,求曲線yf(x)在(3,f(3))處切線的斜率;

(2)求函數f(x)的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,在下列命題中,其中正確命題的序號是.
⑴曲線 必存在一條與 軸平行的切線;
⑵函數 有且僅有一個極大值,沒有極小值;
⑶若方程 有兩個不同的實根,則 的取值范圍是 ;
⑷對任意的 ,不等式 恒成立;
⑸若 ,則 ,可以使不等式 的解集恰為 ;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 為常數,e=2.71828……是自然對數的底數).
(1)當 時,求函數 的單調區(qū)間;
(2)若函數 內存在兩個極值點,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數,現有3位同學分別給出了下列三個結果:① ;②26-7;③ ,其中正確的結論是( )
A.僅有①
B.僅有②
C.②與③
D.僅有③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數約有66萬,為了解老人們的健康狀況,政府從 老人中隨機抽取600人并委托醫(yī)療機構免費為他們進行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行 統(tǒng)計,樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā) 放生活補貼,標準如下:①80歲及以上長者每人每月發(fā)放生活補貼200元;②80歲以下 老人每人每月發(fā)放生活補貼120元;③不能自理的老人每人每月額外發(fā)放生活補貼100 元.試估計政府執(zhí)行此計劃的年度預算.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數 若函數 上有3個零點,則 的取值范圍為

查看答案和解析>>

同步練習冊答案