【題目】設(shè)函數(shù) ( 為常數(shù),e=2.71828……是自然對數(shù)的底數(shù)).
(1)當(dāng) 時(shí),求函數(shù) 的單調(diào)區(qū)間;
(2)若函數(shù) 在 內(nèi)存在兩個(gè)極值點(diǎn),求 的取值范圍.
【答案】
(1)解:函數(shù) 的定義域?yàn)?
由 可得 ,
所以當(dāng) 時(shí), ,函數(shù) 單調(diào)遞減;
當(dāng) 時(shí), ,函數(shù) 單調(diào)遞增;
所以 的單調(diào)遞減區(qū)間為 單調(diào)遞增區(qū)間為
(2)解:由1知, 時(shí),函數(shù) 在 內(nèi)單調(diào)遞減,
故 在 內(nèi)不存在極值點(diǎn);
當(dāng) 時(shí),設(shè)函數(shù) ,,
因?yàn)? ,
當(dāng) 時(shí),當(dāng) 時(shí), , 單調(diào)遞增;
故 在 內(nèi)不存在兩個(gè)極值點(diǎn);
當(dāng) 時(shí),得 時(shí), ,函數(shù) 單調(diào)遞減;
時(shí), ,函數(shù) 單調(diào)遞增;
所以函數(shù) 的最小值為 ,
函數(shù) 在 內(nèi)存在兩個(gè)極值點(diǎn),
當(dāng)且僅當(dāng) ,解得 .
綜上所述,函數(shù) 在 內(nèi)存在兩個(gè)極值點(diǎn)時(shí),k的取值范圍為
【解析】(1)根據(jù)題意結(jié)合已知條件求出原函數(shù)的導(dǎo)函數(shù)利用導(dǎo)函數(shù)在指定區(qū)間上的的正負(fù)情況得出原函數(shù)的增減性以及增減區(qū)間。(2)函數(shù)f(x) 在( 0 , 2 ) 內(nèi)存在兩個(gè)極值點(diǎn),等價(jià)于它的導(dǎo)函數(shù)f‘(x) 在 ( 0 , 2 ) 內(nèi)存在兩個(gè)不同的零點(diǎn)。
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的零點(diǎn)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , 為線段(含端點(diǎn))上一個(gè)動(dòng)點(diǎn),設(shè)對于函數(shù),給出以下三個(gè)結(jié)論:
①當(dāng)時(shí),函數(shù)的值域?yàn)?/span>;
②對于任意的,均有;
③對于任意的,函數(shù)的最大值均為4.
其中所有正確的結(jié)論序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點(diǎn)P的極角為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年,在國家創(chuàng)新驅(qū)動(dòng)戰(zhàn)略下,北斗系統(tǒng)作為一項(xiàng)國家高科技工程,一個(gè)開放型的創(chuàng)新平臺(tái),1400多個(gè)北斗基站遍布全國,上萬臺(tái)設(shè)備組成星地“一張網(wǎng)”,國內(nèi)定位精度全部達(dá)到亞米級,部分地區(qū)達(dá)到分米級,最高精度甚至可以達(dá)到厘米或毫米級。最近北斗三號工程耗資元建成一大型設(shè)備,已知這臺(tái)設(shè)備維修和消耗費(fèi)用第一年為元,以后每年增加元(是常數(shù)),用表示設(shè)備使用的年數(shù),記設(shè)備年平均維修和消耗費(fèi)用為,即 (設(shè)備單價(jià)設(shè)備維修和消耗費(fèi)用)設(shè)備使用的年數(shù).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng), 時(shí),求這種設(shè)備的最佳更新年限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點(diǎn)P的極角為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司有6名產(chǎn)品推銷員,其中工作年限與年推銷金額數(shù)據(jù)如下表:
推銷員編號 | 1 | 2 | 3 | 4 | 5 |
工作年限/年 | 3 | 5 | 6 | 7 | 9 |
推銷金額/萬元 | 2 | 3 | 4 | 5 | 6 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)求年推銷金額關(guān)于工作年限的線性回歸方程;
(3)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線C1 (t為參數(shù)),C2 (θ為參數(shù)),
(Ⅰ)當(dāng)α= 時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3﹣x2﹣x+a , 若函數(shù)f(x)過點(diǎn)A(1,0),求函數(shù)在區(qū)間[﹣1,3]上的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com