【題目】在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面積是 ,求AB.

【答案】
(1)解:∵A+B+C=π,

∴sin(A+C)=sin(π﹣B)=sinB,

∴2sinBcosA=sin(A+C)化為:2sinBcosA=sinB,

∵B∈(0,π),∴sinB>0,

∴cosA= ,

∵A∈(0,π),

∴A= ;


(2)解:∵A= ,∴cosA= ,

又BC=2,SABC= ABACsin = ,即ABAC=4①,

∴由余弦定理得:BC2=AB2+AC2﹣2ABACcosA=AB2+AC2﹣ABAC,

∴AB2+AC2=BC2+ABAC=4+4=8,

∴(AB+AC)2=AB2+AC2+2ABAC=8+8=16,即AB+AC=4②,

聯(lián)立①②解得:AB=AC=2,

則AB=2.


【解析】(1)由三角形的內(nèi)角和定理及誘導(dǎo)公式得到sin(A+C)=sinB,代入已知的等式,根據(jù)sinB不為0,可得出cosA的值,再由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)由A的度數(shù)求出cosA的值,再由三角形的面積公式表示出三角形ABC的面積,將已知的面積及sinA的值代入求出ABAC的值,記作①,利用余弦定理得到BC2=AB2+AC2﹣2ABACcosA,求出將cosA,BC及ABAC的值代入,整理后求出AB2+AC2的值,再根據(jù)ABAC的值,利用完全平方公式變形,開方求出AB+AC的值,記作②,聯(lián)立①②即可求出AB的長.
【考點精析】認(rèn)真審題,首先需要了解余弦定理的定義(余弦定理:;;).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosλθ,cos(10﹣λ)θ), =(sin(10﹣λ)θ,sinλθ),λ、θ∈R.
(1)求 + 的值;
(2)若 ,求θ;
(3)若θ= ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax2+(a﹣2)x﹣2(a∈R).
(1)解關(guān)于x的不等式f(x)≥0;
(2)若a>0,當(dāng)﹣1≤x≤1時,f(x)≤0時恒成立,求a的取值范圍.
(3)若當(dāng)﹣1<a<1時,f(x)>0時恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點 對稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對稱.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1當(dāng),求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時,函數(shù)有唯一零點,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2.

1求橢圓的方程;

2過橢圓的右焦點且垂直于軸的直線交橢圓兩點 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求橢圓的標(biāo)準(zhǔn)方程
(1)已知某橢圓的左右焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且經(jīng)過點P( , ),求該橢圓的標(biāo)準(zhǔn)方程;
(2)已知某橢圓過點( ,﹣1),(﹣1, ),求該橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生在一門功課的22次考試中,所得分?jǐn)?shù)莖葉圖如圖所示,則此學(xué)生該門功課考試分?jǐn)?shù)的極差與中位數(shù)之和為(

A.117
B.118
C.118.5
D.119.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界. 已知函數(shù)f(x)=1+a( x+( x;g(x)=
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)值域并說明函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù)?
(Ⅱ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)已知m>﹣1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案