1.若雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{^{2}}$=1的焦點(diǎn)為F1(-5,0),F(xiàn)2(5,0),則雙曲線的漸近線方程為( 。
A.3x±4y=0B.4x±3y=0C.4x±5y=0D.5x±4y=0

分析 依題意,9+b2=25,b>0,從而可求得b,于是可求該雙曲線的漸近線方程.

解答 解:∵雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的焦點(diǎn)為F1(-5,0),F(xiàn)2(5,0),
∴9+b2=25,又b>0,
∴b=4,
∴該雙曲線的漸近線方程為y=±$\frac{4}{3}$x,整理得:4x±3y=0.
故選:B.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì),主要是漸近線方程的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足條件f(-x+5)=f(x-3),且方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
(1)求f(x)的解析式;
(2)是否存在實(shí)數(shù)m,n (m<n),使f(x)的定義域和值域分別是[m,n]和[2m,2n]?如果存在,求出m,n的值; 如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2}\;,x<1\\{2^x},x≥1.\end{array}\right.$則$f(f(\frac{1}{2}))$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正常情況下,年齡在18歲到38歲的人,體重y(kg)對身高x(cm)的回歸方程為$\stackrel{∧}{y}$═0.72x-58.2,張紅同學(xué)(20歲)身高為178cm,她的體重應(yīng)該在69.96kg左右.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=sin($\frac{3π}{2}$+x)cos($\frac{π}{6}$-x)的最大值為$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)是奇函數(shù)的是( 。
A.f(x)=x2+2|x|B.f(x)=x•sinxC.f(x)=2x+2-xD.$f(x)=\frac{cosx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[-3,-2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是( 。
A.f(sinA)>f(sinB)B.f(cosA)>f(cosB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,拋物線C:y2=4x的焦點(diǎn)為F,P為拋物線C上一點(diǎn),且PF=5,則點(diǎn)P的橫坐標(biāo)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在邊長為1的等邊△ABC中,O為邊AC的中點(diǎn),BO為邊AC上的中線,$\overrightarrow{BG}$=2$\overrightarrow{GO}$,設(shè)$\overrightarrow{CD}$∥$\overrightarrow{AG}$,若$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),則|$\overrightarrow{AD}$|=$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊答案