【題目】下列正確命題有__________

①“”是“”的充分不必要條件

②如果命題“”為假命題,則中至多有一個(gè)為真命題

③設(shè),若,則的最小值為

④函數(shù)上存在,使,則a的取值范圍.

【答案】③④

【解析】解答:

時(shí),“θ=30°”不一定成立,“θ=30°”時(shí)一定成立,θ=30°”的必要不充分條件,故①錯(cuò)誤;

②如果命題“(pq)”為假命題,則命題pq為真命題,則p,q中可能全為真命題,故②錯(cuò)誤;

a>0,b>1,a+b=2,b1>0,a+(b1)=1,,故③正確;

④函數(shù)f(x)=3ax+12a(1,1)上存在x0,使f(x0)=0,f(1)f(1)<0,(3a+12a)(a+1)<0,解得a<1,故④正確,

故正確的命題有:③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生其中考試語文成績(jī)的頻率分布直方圖所示,其中成績(jī)分組區(qū)間是:

.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分;

(3)若這100名學(xué)生語文某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,

求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知點(diǎn),和平面內(nèi)一點(diǎn)),過點(diǎn)任作直線與橢圓相交于,兩點(diǎn),設(shè)直線,的斜率分別為,,,,試求,滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:

使用智能手機(jī)

不使用智能手機(jī)

合計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

4

8

12

學(xué)習(xí)成績(jī)不優(yōu)秀

16

2

18

合計(jì)

20

10

30

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

經(jīng)計(jì)算,則下列選項(xiàng)正確的是

A.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響

B.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響

C.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響

D.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯(cuò)誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)上的最小值;

(II)若函數(shù)的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,的重心,.

(1)求證:平面;

(2)若側(cè)面底面,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求的展開式中的系數(shù)及展開式中各項(xiàng)系數(shù)之和;

(2)從0,2,3,4,5,6這6個(gè)數(shù)字中任取4個(gè)組成一個(gè)無重復(fù)數(shù)字的四位數(shù),求滿足條件的四位數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為3的菱形ABCD中,∠ABC=60°,平面ABCD,且,EPD中點(diǎn),F在棱PA上,且.

(1)求證:CE∥平面BDF;

(2)求點(diǎn)P到平面BDF的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案