已知三棱錐S-ABC中,底面ABC為邊長等于2的等邊三角形,SA⊥底面ABC,SA=3,那么直線SB與平面SAC所成角的正弦值為   
【答案】分析:過B作BD垂直于AC于D,連接SD,由已知中底面ABC為邊長等于2的等邊三角形,SA⊥底面ABC,易得∠BSD即為直線SB與平面SAC所成角,根據(jù)SA=3,使用勾股定理求出三角形SBD中各邊的長后,解三角形SBD即可得到.
解答:解:過B作BD垂直于AC于D,連接SD
∵底面ABC為邊長等于2的等邊三角形,SA⊥底面ABC,
∴BD⊥AC,SA⊥BD,AC∩SA=A
則BD⊥平面SAC,
則∠BSD即為直線SB與平面SAC所成角
∵SA=3,
∴SD=,BD=,SB=
在Rt∠SBD中,sin∠BSD==
故答案為:
點評:本題考查的知知識點是直線與平面所成的角,其中求出直線與平面夾角的平面角,將線面夾角問題轉(zhuǎn)化為解三角形問題是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的各頂點都在一個半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,則球的體積與三棱錐體積之比是( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2;則此棱錐的體積為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,若點P到S、A、B、C這四點的距離都是同一個值,則這個值是
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•蘭州一模)已知三棱錐S-ABC的所有頂點都在以O為球心的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的四個頂點在以O為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當球的表面積為400π時,點O到平面ABC的距離為(  )

查看答案和解析>>

同步練習冊答案