已知拋物線,過軸上一點的直線與拋物線交于點兩點。

證明,存在唯一一點,使得為常數(shù),并確定點的坐標。

 

【答案】

時,為定值,此時。

【解析】

試題分析:設(shè)),過點直線方程為,交拋物線于聯(lián)立方程組

由韋達定理得…5分

使用,              7分

,                    12分

所以,時,為定值,此時。                17分

考點:直線與拋物線的位置關(guān)系,兩點間的距離公式。

點評:中檔題,涉及直線與圓錐曲線位置關(guān)系問題,往往通過聯(lián)立方程組,應(yīng)用韋達定理,簡化解題過程 。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,且交橢圓C于A,B兩點,點A,F(xiàn),B在直線G:x=a2上的射影依次為點D,K,E,
(1)已知拋物線x2=4
3
y
的焦點為橢圓C的上頂點.
①求橢圓C的方程;
②若直線L交y軸于點M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當m變化時,求λ12的值;
(2)連接AE,BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在坐標原點,焦點在x軸上,P(2,0)為定點.
(Ⅰ)若點P為拋物線的焦點,求拋物線C的方程;
(Ⅱ)若動圓M過點P,且圓心M在拋物線C上運動,點A、B是圓M與y軸的兩交點,試推斷是否存在一條拋物線C,使|AB|為定值?若存在,求這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點坐標為F(2,0),點P的坐標為(m,0)(m≠0),設(shè)過點P的直線l交拋物線C于A,B兩點,點P關(guān)于原點的對稱點為點Q.
(1)當直線l的斜率為1時,求△QAB的面積關(guān)于m的函數(shù)表達式.
(2)試問在x軸上是否存在一定點T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點T 的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黑龍江一模)已知拋物線y2=2px(p>0),F(xiàn)為其焦點,l為其準線,過F任作一條直線交拋物線于A、B兩點,A'、B'分別為A、B在l上的射影,M為A'B'的中點,給出下列命題:
①A'F⊥B'F;
②AM⊥BM;
③A'F∥BM;
④A'F與AM的交點在y軸上;
⑤AB'與A'B交于原點.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知線段AB過軸上一點,斜率為,兩端點A,B到軸距離之差為,

(1)求以O(shè)為頂點,軸為對稱軸,且過A,B兩點的拋物線方程;

(2)設(shè)Q為拋物線準線上任意一點,過Q作拋物線的兩條切線,切點分別為M,N,求證:直線MN過一定點;

查看答案和解析>>

同步練習冊答案