【題目】若曲線C1:x2+y2-2x=0與曲線C2:y(y-mx+3m)=0有四個不同的交點,則實數(shù)m的取值范圍是
A. B.
C. D.
【答案】A
【解析】
由題意可知曲線表示一個圓,曲線表示兩條直線和,把圓的方程化為標(biāo)準(zhǔn)方程后找出圓心與半徑,此圓與有兩交點,由兩曲線要有4個交點可知,圓與要有2個交點,根據(jù)直線過定點,先求出直線與圓相切時的值,然后根據(jù)圖象可寫出滿足題意的的范圍.
由題意可知曲線表示一個圓,化為標(biāo)準(zhǔn)方程得:
圓心坐標(biāo)為,半徑;
表示兩條直線和,
由直線可知,此直線過定點,
直線和圓交于點和,
因此直線與圓相交即可滿足條件,
當(dāng)直線與圓相切時,圓心到直線的距離,
化簡得,解得,
而時,直線方程為,兩直線重合,不合題意,
則直線與圓相交時,,故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù),在(0,+)上是增函數(shù),且f(3)=0,則滿足f(x)>0的實數(shù)x的范圍是( )
A.(,3)(0,3)B.(3,0)(3,+)
C.(,3)(3,+)D.(3,0)(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,且,過點的直線與橢圓交于,兩點,的周長為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心C在直線l上,若圓C上存在點M,使|MA|=2|MO|,則點M的軌跡方程是________,圓心C的橫坐標(biāo)的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校、兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差
①班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
②班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
③班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
④班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
其中正確結(jié)論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若對于任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求的值;
(2)設(shè),試討論函數(shù)的單調(diào)性;
(3)當(dāng)時,若存在正實數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a,.
當(dāng)時,若在處取得極小值,求a的值;
當(dāng)時.
若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;
若存在實數(shù),使得,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com