在△ABC中,已知sin(數(shù)學公式+B)=數(shù)學公式
(1)求tan2B的值;
(2)若cosA=數(shù)學公式,c=10,求△ABC的面積;
(3)若函數(shù)f(x)=數(shù)學公式,求f(C)+sin2C的值.

解:(1)∵sin(+B)=cosB=,
又B為三角形的內(nèi)角,
∴sinB==
∴tanB==,
則tan2B===
(2)∵cosA=,A為三角形的內(nèi)角,
∴sinA==,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=
又c=10,
==,即b==2,a==2,
則△ABC的面積S=bcsinA=×2×10×=10;
(3)∵f(x)==
==2cos2x+1-2=2cos2x-1=cos2x,
∴f(C)=cos2C,
又a=2,b=2,c=10,
∴cosC===-,
又C為三角形的內(nèi)角,∴C=,
則f(C)+sin2C=cos2C+sin2C=sin(2C+)=sin=-1.
分析:(1)利用誘導公式化簡已知的等式左邊,得到cosB的值,再由B為三角形的內(nèi)角,利用同角三角函數(shù)間的基本關系求出sinB的值,進而求出tanB的值,利用二倍角的正切函數(shù)公式化簡tan2B后,將tanB的值代入即可求出tan2B的值;
(2)由cosA的值及A為三角形的內(nèi)角,利用同角三角函數(shù)間的基本關系求出sinA的值,再利用誘導公式得到sinC=sin(A+B),利用兩角和與差的正弦函數(shù)公式化簡sin(A+B)后將各自的值代入求出sinC的值,再由c及sinB的值,利用正弦定理求出b的長,最后由b,c及sinA的值,即可求出三角形ABC的面積;
(3)將函數(shù)f(x)解析式的分子第一、三項結(jié)合,利用平方差公式及二倍角的余弦函數(shù)公式化簡,分子各項都除以分母,化簡合并后,再利用二倍角的余弦函數(shù)公式化簡,得到最簡結(jié)果,然后將x=C代入函數(shù)解析式得到f(C),代入所求式子中,提取,利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),由第二問求出的a,b及c的值,利用余弦定理求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出C的度數(shù),進而求出這個角的度數(shù),利用特殊角的三角函數(shù)值即可求出所求式子的值.
點評:此題考查了正弦、余弦定理,三角形的面積公式,二倍角的正切、余弦函數(shù)公式,同角三角函數(shù)間的基本關系,以及誘導公式,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,則
AB
AC
的值為(  )
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•婺城區(qū)模擬)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P為線段AB上的點,且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,則xy的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,則B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P為線段AB上的一點,且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,則
1
x
+
1
y
的最小值為
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:高中數(shù)學全解題庫(國標蘇教版·必修4、必修5) 蘇教版 題型:044

在△ABC中,已知SABC(a2+b2),求A,B,C

查看答案和解析>>

同步練習冊答案