6.若正項等比數(shù)列{an}滿足a1-a3=-3,a1-a4=-7,則a5=16.

分析 利用等比數(shù)列的通項公式即可得出.

解答 解:設(shè)正項等比數(shù)列{an}的公比為q>0,∵a1-a3=-3,a1-a4=-7,
∴a1(1-q2)=-3,a1(1-q3)=-7,
解得a1=1,q=2.
則a5=24=16.
故答案為:16.

點評 本題考查了等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\overrightarrow{a}$與 $\overrightarrow$的長都為2,且$\overrightarrow{a}⊥(\overrightarrow-\overrightarrow{a}$),則$\overrightarrow{a}$?$\overrightarrow$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從長度分別為1cm,3cm,5cm,7cm,9cm的5條線段中,任意取出3條,3條線段能構(gòu)成三角形的概率是( 。
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在長方體ABCD-A1B1C1D1中,AA1=A1D1=a,A1B1=2a,點P在線段AD1上運動,當(dāng)異面直線CP與BA1所成的角最大時,則三棱錐C-PA1D1的體積為(  )
A.$\frac{a^3}{4}$B.$\frac{a^3}{3}$C.$\frac{a^3}{2}$D.a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面直角坐際系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系,曲線C1方程為ρ=2sinθ;C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)).
(I)寫出曲線C1的直角坐標方程并判斷點(1,$\frac{π}{4}$)和曲線C1的位置關(guān)系.
(Ⅱ)若曲線C1與曲線C2距離的交點為A,B且|AB|=$\frac{4\sqrt{5}}{5}$,求曲線C2的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓心在直線y=-2x上,且圓過點(2,-1),與直線y=x-1相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了判斷高中三年級學(xué)生選修文科是否與性別有關(guān),現(xiàn)隨機抽取50名學(xué)生,得到2×2列聯(lián)表:
理科文科合計
141024
62026
合計203050
根據(jù)表中數(shù)據(jù),計算選修文科與性別有關(guān)系出錯的可能性約為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為120°,且$|\overrightarrow{AB}|=3$,$|\overrightarrow{AC}|=2$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+\overrightarrow{AC}$且$\overrightarrow{AP}⊥\overrightarrow{BC}$,則實數(shù)λ的值為( 。
A.$\frac{3}{7}$B.$\frac{7}{3}$C.$\frac{7}{12}$D.$\frac{12}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2πx2的導(dǎo)數(shù)是( 。
A.f′(x)=4πxB.f′(x)=4π2xC.f′(x)=2π2xD.f′(x)=πx

查看答案和解析>>

同步練習(xí)冊答案