20.函數(shù)f(x)=0.3|x|的值域?yàn)椋?,1].

分析 利用換元法,設(shè)u=|x|,可得u≥0.則f(u)=0.3u是一個(gè)單調(diào)遞減,根據(jù)復(fù)合函數(shù)的性質(zhì)可得值域.

解答 解:函數(shù)f(x)=0.3|x|
設(shè)u=|x|,可得u≥0.則f(u)=0.3u是一個(gè)單調(diào)遞減的函數(shù),
當(dāng)u=0時(shí),函數(shù)f(u)取得最大值為1,
∴函數(shù)f(x)=0.3|x|的值域?yàn)椋?,1],
故答案為(0,1].

點(diǎn)評(píng) 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題正確的是( 。
A.若a>b,則ac2>bc2B.若a>b>0,則a2>b2
C.若a>b,c<d,則 a-c<b-dD.若a<b<0,則$\frac{1}{a}<\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.$sin\frac{7π}{8}cos\frac{7π}{8}$=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)=x2-ax+2,當(dāng)x∈(2,+∞)時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,P在邊BC上且BP=2PC,則$\overrightarrow{AP}$=( 。
A.$\frac{4}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$D.$\frac{1}{3}\overrightarrow a+\frac{4}{3}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},1),\overrightarrow n=(cos\frac{x}{2},{cos^2}\frac{x}{2}),f(x)=2\overrightarrow m•\overrightarrow n-1$
(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)畫出函數(shù)f(x)在[0,2π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a>b>1,c<0,給出下列四個(gè)結(jié)論:
①ac>1;②ac<bc;③logb(a-c)>logb(b-c);④ab-c>aa-c
其中所有的正確結(jié)論的序號(hào)是( 。
A.①②B.②③C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)為一次函數(shù),g(x)為二次函數(shù),且f[g(x)]=g[f(x)].
(Ⅰ)求f(x)的解析式;
(Ⅱ)若y=g(x)與x軸及y=f(x)都相切,且g(0)=$\frac{1}{16}$,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,三四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2.
(1)求異面直線PB與CD所成角的余弦值;
(2)線段AD上是否存在Q,使得它到平面PCD的距離為$\frac{3}{2}$?若存在,求出$\frac{AQ}{QD}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案