已知拋物線C:y2=8x的焦點為F,準(zhǔn)線與x軸的交點為K,點A在C上且數(shù)學(xué)公式,則△AFK的面積為


  1. A.
    4
  2. B.
    8
  3. C.
    16
  4. D.
    32
B
分析:根據(jù)拋物線的方程可知焦點坐標(biāo)和準(zhǔn)線方程,進(jìn)而可求得K的坐標(biāo),設(shè)A(x0,y0),過A點向準(zhǔn)線作垂線AB,則B(-2,y0),根據(jù)及AF=AB=x0-(-2)=x0+2,進(jìn)而可求得A點坐標(biāo),進(jìn)而求得△AFK的面積.
解答:解:∵拋物線C:y2=8x的焦點為F(2,0),準(zhǔn)線為x=-2
∴K(-2,0)
設(shè)A(x0,y0),過A點向準(zhǔn)線作垂線AB,則B(-2,y0
,又AF=AB=x0-(-2)=x0+2
∴由BK2=AK2-AB2得y02=(x0+2)2,即8x0=(x0+2)2,解得A(2,±4)
∴△AFK的面積為
故選B.
點評:此題重點考查雙曲線的第二定義,雙曲線中與焦點,準(zhǔn)線有關(guān)三角形問題;由題意準(zhǔn)確畫出圖象,利用離心率轉(zhuǎn)化位置,在△ABK中集中條件求出x0是關(guān)鍵;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點. A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標(biāo)原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標(biāo)原點.
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊答案