【題目】已知數(shù)列的前項和為,且對一切正整數(shù)都有.
(1)求證:;
(2)求數(shù)列的通項公式;
(3)是否存在實數(shù),使不等式,對一切正整數(shù)都成立?若存在,求出的取值范圍;若不存在,請說明理由.
【答案】(1)證明見解析;(2);(3)存在;的取值范圍是.
【解析】
(1)由題得①,②,②-①即得;
(2)由題得.,再對分奇數(shù)和偶數(shù)兩種情況討論,求出數(shù)列的通項公式;
(3)令,判斷函數(shù)的單調(diào)性,求出其最大值,解不等式即得解.
(1)證明:∵①,
∴②
由②-①得,
∴.
(2)∵③
∴,④
④-③,得.
從而數(shù)列的奇數(shù)項依次成等差數(shù)列,且首項為,公差為;
數(shù)列的偶數(shù)項也依次成等差數(shù)列,且首項為,公差為.
在①中令得,又∵,∴.
在③中令得,∴.
∴當時,,;
∴當時,,;
綜上所述,.
(3)令,則
且
∴,
∴單調(diào)遞減,
∴.
∴不等式對一切正整數(shù)都成立等價于對一切正整數(shù)都成立,
等價于,即.
∴,即,
解之得,或.
綜上所述,存在實數(shù)的適合題意,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年女排世界杯(第13屆女排世界杯)是由國際排聯(lián)舉辦的賽事,比賽于2019年9月14日至9月29日在日本舉行,共有12支參賽隊伍.本次比賽啟用了新的排球用球_,已知這種球的質(zhì)量指標ξ(單位:)服從正態(tài)分布.比賽賽制采取單循環(huán)方式,即每支球隊進行11場比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取5局3勝制):比賽中以或取勝的球隊積3分,負隊積0分;而在比賽中以取勝的球隊積2分,負隊積1分.9輪過后,積分榜上的前2名分別為中國隊和美國隊,中國隊積26分,美國隊積22分.第10輪中國隊對抗塞爾維亞隊,設(shè)每局比賽中國隊取勝的概率為.
(1)如果比賽準備了1000個排球,估計質(zhì)量指標在內(nèi)的排球個數(shù)(計算結(jié)果取整數(shù))
(2)第10輪比賽中,記中國隊取勝的概率為,求出的最大值點,并以作為p的值,解決下列問題.
(i)在第10輪比賽中,中國隊所得積分為X,求X的分布列;
(ii)已知第10輪美國隊積3分,判斷中國隊能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結(jié)果如何,中國隊積分最多)?若能,求出相應(yīng)的概率;若不能,請說明理由.
參考數(shù)據(jù):,則,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e為自然對數(shù)的底數(shù))
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在 上無零點,求a的最小值;
(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PA∥CE,AB=CEPA,PA⊥平面ABCD.
(1)證明:PE⊥平面DBE;
(2)求二面角B﹣PD﹣E的正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若,恒成立,求實數(shù)的最大值;
(2)在(1)的條件下,求證:函數(shù)在區(qū)間內(nèi)存在唯一的極大值點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對數(shù)是簡化繁雜運算的產(chǎn)物.16世紀時,為了簡化數(shù)值計算,數(shù)學(xué)家希望將乘除法歸結(jié)為簡單的加減法.當時已經(jīng)有數(shù)學(xué)家發(fā)現(xiàn)這在某些情況下是可以實現(xiàn)的.
比如,利用以下2的次冪的對應(yīng)表可以方便地算出的值.
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
首先,在第二行找到16與256;然后找出它們在第一行對應(yīng)的數(shù),即4與8,并求它們的和,即12;最后在第一行中找到12,讀出其對應(yīng)的第二行中的數(shù)4096,這就是的值.
用類似的方法可以算出的值,首先,在第二行找到4096與128;然后找出它們在第一行對應(yīng)的數(shù),即12與7,并求它們的______;最后在第一行中找到______,讀出其對應(yīng)的第二行中的數(shù)______,這就是值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是坐標原點,橢圓:的左右焦點分別為,,點在橢圓上,若的面積最大時且最大面積為.
(1)求橢圓的標準方程;
(2)直線:與橢圓在第一象限交于點,點是第四象限內(nèi)的點且在橢圓上,線段被直線垂直平分,直線與橢圓交于另一點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點至十點時間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:
是否輔導(dǎo) 性別 | 輔導(dǎo) | 不輔導(dǎo) | 合計 |
男 | 25 | 60 | |
女 | |||
合計 | 40 | 80 |
(1)請將表中數(shù)據(jù)補充完整;
(2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學(xué)的成人女性晚上八點至十點輔導(dǎo)子女作業(yè)的概率;
(3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認為“晚上八點至十點時間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com