【題目】(1)若,恒成立,求實數(shù)的最大值;
(2)在(1)的條件下,求證:函數(shù)在區(qū)間內存在唯一的極大值點,且.
【答案】(1).(2)家粘結性
【解析】
(1)令,求出導函數(shù),由確定增區(qū)間,確定減區(qū)間,從而得的最小值,得的取值范圍,即得;
(2)求出導函數(shù),通分后,令,再求導數(shù),令.分類討論,當時,,得遞減,從而可得在上有唯一零點,時,令.利用導數(shù)得的單調性,從而得,于是得出在上的單調性,得唯一極大值點.由可對變形,得,只要證明在上,從而可證得結論.
(1)解:令,則.
可見,;.
故函數(shù)在上單調遞減,在上單調遞增.
所以,當且僅當時,函數(shù)取最小值1.
由題意,實數(shù).所以.
(2)由(1),.
令,
則.
令.
①當時,,,,所以.
可見,,所以在上單調遞減.
又(由(1),可得,所以),
,所以存在唯一的,使得.
從而,當時,,,單調遞增;當時,,,單調遞減.
②當時,令.
則.所以在上單調遞減.
所以(由(1),可得,所以).
又當時,,,,
所以當時,,從而.所以在單調遞增.
綜上所述,在上單調遞增,在上單詞遞減.
所以,函數(shù)在區(qū)間內存在唯一極大值點.
關于的證明如下:
由上面的討論,,且,所以,所以.
于是.
令.當時,.所以在上單調遞增.所以,當時,,即.
又因為,所以,,所以.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某機械零件的幾何結構,該幾何體是由兩個相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側棱互相垂直.則這個幾何體有________個面,其體積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設計師單獨設計出來的玩偶.由于盒子上沒有標注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經濟”.某款盲盒內可能裝有某一套玩偶的、、三種樣式,且每個盲盒只裝一個.
(1)若每個盲盒裝有、、三種樣式玩偶的概率相同.某同學已經有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點為調查該款盲盒的受歡迎程度,隨機發(fā)放了200份問卷,并全部收回.經統(tǒng)計,有的人購買了該款盲盒,在這些購買者當中,女生占;而在未購買者當中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認為購買該款盲盒與性別有關?
女生 | 男生 | 總計 | |
購買 | |||
未購買 | |||
總計 |
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點已經售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 | 30 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負責人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進行檢驗.
①請用4、5、6周的數(shù)據(jù)求出關于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
③如果通過②的檢驗得到的回歸直線方程可靠,我們可以認為第2周賣出的盒數(shù)誤差也不超過2盒,請你求出第2周賣出的盒數(shù)的可能取值;如果不可靠,請你設計一個估計第2周賣出的盒數(shù)的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關關系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點為,,離心率為,過點且垂直于軸的直線被橢圓截得的弦長為1.
(1)求橢圓的方程;
(2)若直線交橢圓于點,兩點,與線段和橢圓短軸分別交于兩個不同點,,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且對一切正整數(shù)都有.
(1)求證:;
(2)求數(shù)列的通項公式;
(3)是否存在實數(shù),使不等式,對一切正整數(shù)都成立?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓經過橢圓的左右焦點,與橢圓在第一象限的交點為,且, , 三點共線.
(1)求橢圓的方程;
(2)設與直線(為原點)平行的直線交橢圓于兩點,當的面積取取最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.
(1)求曲線的普通方程和極坐標方程;
(2)設直線與曲線交于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓周率是圓的周長與直徑的比值,一般用字母表示.我們可以通過設計一個試驗來估計的值:從表示的區(qū)域內隨機抽取200個實數(shù)對,其中x,y兩個數(shù)能與1構成鈍角三角形三邊長的數(shù)對共有56個.則用隨機模擬的方法估計的近似值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com