【題目】如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數(shù)據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,摩天輪的半徑為40米,摩天輪的軸O點距離地面的高度為45米,摩天輪勻速逆時針旋轉,每6分鐘轉一圈,摩天輪上點P的起始位置在最高點處,下面的有關結論正確的有( )
A.經過3分鐘,點P首次到達最低點
B.第4分鐘和第8分鐘點P距離地面一樣高
C.從第7分鐘至第10分鐘摩天輪上的點P距離地面的高度一直在降低
D.摩天輪在旋轉一周的過程中有2分鐘距離地面不低于65米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為120的樣本,測量樹苗高度(單位:cm),經統(tǒng)計,其高度均在區(qū)間[19,31]內,將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹苗為優(yōu)質樹苗.
(1)求圖中a的值;
(2)已知所抽取的這120棵樹苗來自于A,B兩個試驗區(qū),部分數(shù)據如下列聯(lián)表:
A試驗區(qū) | B試驗區(qū) | 合計 | |
優(yōu)質樹苗 | 20 | ||
非優(yōu)質樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有99.9%的把握認為優(yōu)質樹苗與A,B兩個試驗區(qū)有關系,并說明理由;
(3)用樣本估計總體,若從這批樹苗中隨機抽取4棵,其中優(yōu)質樹苗的棵數(shù)為X,求X的分布列和數(shù)學期望EX.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓C:(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為,且經過點(0,1).
(1)求實數(shù)a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標柱上,規(guī)則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將個圓盤從起始柱移動到目標柱上最少需要移動的次數(shù)記為,則__________,__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com