分析 由題意可得a1,a1+2,a1+6成等比數(shù)列,通過(guò)解方程求得 a1的值.然后求和.
解答 解:∵數(shù)列{an}是公差為2的等差數(shù)列,且a1,a2,a4成等比數(shù)列,∴a1,a1+2,a1+6成等比數(shù)列,
∴(a1+2)2=a1(a1+6),解得 a1=2,
數(shù)列{an}的前n項(xiàng)和Sn=2n+$\frac{n(n-1)}{2}×2$=n2+n.
故答案為:2;n2+n.
點(diǎn)評(píng) 本題主要考查等比數(shù)列的定義和性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -6 | B. | 6 | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a3>a2 | B. | a1+a2>0 | C. | $\{{a_n}^2\}$是遞增數(shù)列 | D. | Sn存在最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\frac{1}{x}-{x^2}$ | B. | $f(x)=\frac{1}{x}-{x^3}$ | C. | $f(x)=\frac{1}{x}-{e^x}$ | D. | $f(x)=\frac{1}{x}-lnx$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\frac{\sqrt{6}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com