已知點(diǎn)(1,2)是函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507165859.png)
的圖象上一點(diǎn),數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507180457.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507196276.png)
項(xiàng)和是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507212679.png)
.
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507180457.png)
的通項(xiàng)公式;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507321684.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507336565.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507196276.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507399373.png)
(1)把點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507414458.png)
代入函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507430579.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507446386.png)
, …………(1分)
所以數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507461481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507477297.png)
項(xiàng)和為
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507508357.png)
時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507524493.png)
…………(3分)
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507539435.png)
時(shí),
對(duì)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507508357.png)
時(shí)也適合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507602530.png)
…………(5分)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507617813.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507633473.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507648681.png)
…………(6分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232025076641042.png)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232025076801432.png)
②
由①-②得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507695957.png)
…………(8分)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202507711727.png)
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204221135456.png)
中,已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204221150546.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232042211971014.png)
.
(1)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204221135456.png)
為等差數(shù)列,求
p的值;
(2)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204221135456.png)
的通項(xiàng)公式;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義:若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221126414.png)
為任意的正整數(shù)n,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221158650.png)
為常數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221189249.png)
,則稱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221126414.png)
為“絕對(duì)和數(shù)列”,d叫做“絕對(duì)公和” .已知“絕對(duì)和數(shù)列”
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221126414.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221236394.png)
,絕對(duì)公和為3,則其前2009項(xiàng)的和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203221267430.png)
的最小值為( )
A.-2009 | B.-3010 | C.-3014 | D.3028 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知公差大于零的等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548364481.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548380614.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548411731.png)
為等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548427491.png)
的前三項(xiàng).
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548442660.png)
的通項(xiàng)公式;
(2)設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548364481.png)
的前n項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548474388.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202548583862.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403236457.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403251487.png)
滿足:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403267627.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403283965.png)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403298613.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403314527.png)
)
(Ⅰ)計(jì)算
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403345510.png)
,并求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403251487.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403236457.png)
的通項(xiàng)公式;
(Ⅱ)證明:對(duì)于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403392421.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202403423809.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{
bn}的前
n項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202310274715.png)
.?dāng)?shù)列{
an}滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202310289936.png)
,數(shù)列{
cn}滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202310305508.png)
.
(1)求數(shù)列{
an}和數(shù)列{
bn}的通項(xiàng)公式;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202310321704.png)
對(duì)一切正整數(shù)
n恒成立,求實(shí)數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
記等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742751464.png)
的前n項(xiàng)的和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742767395.png)
,利用倒序求和的方法得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742782906.png)
;類似地,記等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742798485.png)
的前n項(xiàng)的積為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742814379.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742829845.png)
,試類比等差數(shù)列求和的方法,將
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742814379.png)
表示成首項(xiàng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742860328.png)
,末項(xiàng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742876378.png)
與項(xiàng)數(shù)n的一個(gè)關(guān)系式,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201742814379.png)
=
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在各項(xiàng)為正的等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200950273468.png)
中,首項(xiàng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200950289393.png)
,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200950304475.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232009503201136.png)
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200950273468.png)
的通項(xiàng)公式;
(2)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200950351906.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202904909388.png)
是等差數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202904940348.png)
}的前n項(xiàng)和,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202904956633.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202904972355.png)
的值為
▲ .
查看答案和解析>>