已知函數(shù)f(x)=x3+ax2-4x+5,曲線y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,
(1)求a的值;
(2)求y=f(x)的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)利用當(dāng)x=1時(shí),切線l的斜率為3,求導(dǎo)數(shù),可求a的值;
(2)確定函數(shù)的單調(diào)性,即可求y=f(x)的極值.
解答: 解:(1)由f(x)=x3+ax2-4x+5,
得f′(x)=3x2+2ax-4
當(dāng)x=1時(shí),切線l的斜率為3,可得2a-4=0          
解得a=2;
(2)由(1)可得f(x)=x3+ax2-4x+5,f′(x)=3x2+4x-4=(3x-2)(x+2)
令f′(x)=0,得x=-2或x=
2
3

∴函數(shù)在(-∞,-2)上單調(diào)遞增,在(-2,
2
3
)上單調(diào)遞減,在(
2
3
,+∞)
上單調(diào)遞增,
∴y=f(x)在x=-2時(shí),取得極大值為13,x=
2
3
時(shí),取得極小值為
95
27
點(diǎn)評:本題考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的極值、最值,考查學(xué)生應(yīng)用導(dǎo)數(shù)解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù)),曲線C2的參數(shù)方程為
x=2+2cosβ
y=2sinβ
(β為參數(shù)),M是C1上的點(diǎn),P是C2上的點(diǎn),且滿足
OP
=2
OM

(Ⅰ)求C1和C2的公共弦長;
(Ⅱ)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,求M,P的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(1)解不等式2x2+(2-a)x-a>0;
(2)b為何值時(shí),(a-3+b)x2+bx+3≥0的解集為R?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A′B′C′棱長均為2,E為AB中點(diǎn).點(diǎn)D在側(cè)棱BB′上.
(Ⅰ)求AD+DC′的最小值;
(Ⅱ)當(dāng)AD+DC′取最小值時(shí),在CC′上找一點(diǎn)F,使得EF∥面ADC′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx-x(x>0)
ex(x2+x+a)(x≤0)
,(其中a∈R,e為自然對數(shù)的底數(shù))
(1)證明:當(dāng)x>0時(shí),f(x)<0;
(2)當(dāng)x≤0時(shí),若函數(shù)φ(x)=f(x)-axex存在兩個(gè)相距小于2
3
的極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)證明:?n∈N*,ln(n!)2<n(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|+|2x-1|
(1)解不等式f(x)>2;
(2)若?x∈R,不等式f(x)<
1
2
m2+m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-
3
cosx+2,向量
a
=(2,-cosα),
b
=(1,cot(α+
π
2
))(0<α<
π
4
)且
a
b
=
7
3

(Ⅰ)求f(x)在區(qū)間[
3
,
3
]上的最值;
(Ⅱ)求
2cos2α-sin2(α+π)
cosα-sinα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+bx2+x的極值點(diǎn)是x=1和x=2.
(1)求a,b的值;
(2)求f(x)在[1,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(I)畫出程序框圖:求432的所有正數(shù)約數(shù)(不要求寫算法步驟,只畫程序框圖);
(Ⅱ)事實(shí)上,432的所有正數(shù)約數(shù)從小到大依次為:1,2,3,4,6…,432;換個(gè)寫法,這些約數(shù)從小到大依次是:20×30,21×30,20×31,22×30,21×31,…,24×33.試求出所有這些約數(shù)的和.

查看答案和解析>>

同步練習(xí)冊答案