分析 依題意,f(0)=f($\frac{π}{4}$),可求得m=1,利用輔助角公式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),從而可求得f(x)的單調(diào)遞增區(qū)間.
解答 解:∵函數(shù)f(x)=sin2x+mcos2x的圖象關于直線x=$\frac{π}{8}$對稱,
∴f(0)=f($\frac{π}{4}$),
∴m=1,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z得:
kπ-$\frac{3π}{8}$≤x≤$\frac{π}{8}$+kπ,k∈Z.
又x∈[0,π],
∴f(x)在區(qū)間[0,π]的單調(diào)遞增區(qū)間為[0,$\frac{π}{8}$]和[$\frac{5π}{8}$,π]
故答案為:[0,$\frac{π}{8}$]和[$\frac{5π}{8}$,π].
點評 本題考查正弦函數(shù)的單調(diào)性,考查y=Asin(ωx+φ)的圖象與性質(zhì),考查分析與轉(zhuǎn)化的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限角可能是負角 | B. | -830°是第三象限角 | ||
C. | 鈍角一定是第二象限角 | D. | 相等角的終邊與始邊均相同 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 240 | B. | 120 | C. | $\frac{2π}{3}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-y+1=0 | B. | x-y=0 | C. | x+y+1=0 | D. | x+y=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com