20.已知函數(shù)f(x)=sin2x+mcos2x的圖象關于直線x=$\frac{π}{8}$對稱,則f(x)在區(qū)間[0,π]的單調(diào)遞增區(qū)間為[0,$\frac{π}{8}$]和[$\frac{5π}{8}$,π] 

分析 依題意,f(0)=f($\frac{π}{4}$),可求得m=1,利用輔助角公式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),從而可求得f(x)的單調(diào)遞增區(qū)間.

解答 解:∵函數(shù)f(x)=sin2x+mcos2x的圖象關于直線x=$\frac{π}{8}$對稱,
∴f(0)=f($\frac{π}{4}$),
∴m=1,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z得:
kπ-$\frac{3π}{8}$≤x≤$\frac{π}{8}$+kπ,k∈Z.
又x∈[0,π],
∴f(x)在區(qū)間[0,π]的單調(diào)遞增區(qū)間為[0,$\frac{π}{8}$]和[$\frac{5π}{8}$,π]
故答案為:[0,$\frac{π}{8}$]和[$\frac{5π}{8}$,π].

點評 本題考查正弦函數(shù)的單調(diào)性,考查y=Asin(ωx+φ)的圖象與性質(zhì),考查分析與轉(zhuǎn)化的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|2x-3≥x-2},不等式log2(x+1)<2的解集為B,求A∪B,(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.數(shù)列{an}的前n項和為Sn=n2+2n,則a1+a3+a5+…+a25=351.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列說法中不正確的是( 。
A.第一象限角可能是負角B.-830°是第三象限角
C.鈍角一定是第二象限角D.相等角的終邊與始邊均相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知正方體ABCD-A1B1C1D1棱長為a.
(1)求證:平面BDC1∥平面AB1D1
(2)求證:平面A1C⊥平面AB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果輸入x=2,那么執(zhí)行右圖中算法的結果是( 。
A.輸出2B.輸出4
C.輸出8D.程序出錯,輸不出任何結果

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.扇形的中心角為120°,半徑為2,則它的面積是( 。
A.240B.120C.$\frac{2π}{3}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.甲、乙兩人約定在10:00---12:00會面商談事情,約定先到者應等另一個人30分鐘,即可離去,求兩人能會面的概率$\frac{7}{16}$(用最簡分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若點P(m-2,n+1),Q(n,m-1)關于直線l對稱,則l的方程是( 。
A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=0

查看答案和解析>>

同步練習冊答案